1 GSTools Quickstart
1.1 Purpose ... 1
1.2 Installation .. 2
 conda ... 2
 pip .. 2
1.3 Citation .. 3
1.4 Tutorials and Examples 3
1.5 Spatial Random Field Generation 3
 Examples 4
1.6 Estimating and fitting variograms 6
 Examples 6
1.7 Kriging and Conditioned Random Fields 7
 Example 7
1.8 User defined covariance models 8
 Example 8
1.9 Incompressible Vector Field Generation 9
 Example 9
1.10 VTK/PyVista Export 10
1.11 Requirements 10
 Optional 11
 Contact 11
1.12 License .. 11

2 GSTools Tutorials
2.1 Random Field Generation 13
 Examples 13
2.2 The Covariance Model 26
 Provided Covariance Models 26
 Examples 27
2.3 Variogram Estimation 40
 Examples 40
2.4 Random Vector Field Generation 53
 Examples 54
2.5 Kriging ... 57
 Provided Kriging Methods 58
 Examples 58
2.6 Conditioned Fields 71
 Examples 72
2.7 Field transformations 76
 Examples 76
2.8 Geographic Coordinates 85
<table>
<thead>
<tr>
<th>Version</th>
<th>Date</th>
<th>Title</th>
<th>Enhancements</th>
<th>Changes</th>
<th>Bugfixes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.1</td>
<td>1.3.4</td>
<td>Pure Pink - 2021-11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.2</td>
<td>1.3.3</td>
<td>Pure Pink - 2021-08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>1.3.2</td>
<td>Pure Pink - 2021-07</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.4</td>
<td>1.3.1</td>
<td>Pure Pink - 2021-06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.5</td>
<td>1.3.0</td>
<td>Pure Pink - 2021-04</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.6</td>
<td>1.2.1</td>
<td>Volatile Violet - 2020-04-14</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.7</td>
<td>1.2.0</td>
<td>Volatile Violet - 2020-03-20</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.8</td>
<td>1.1.1</td>
<td>Reverberating Red - 2019-11-08</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.9</td>
<td>1.1.0</td>
<td>Reverberating Red - 2019-10-01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.10</td>
<td>1.0.1</td>
<td>Bouncy Blue - 2019-01-18</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.11</td>
<td>1.0.0</td>
<td>Bouncy Blue - 2019-01-16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.12</td>
<td>0.4.0</td>
<td>Glorious Green - 2018-07-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.13</td>
<td>0.3.6</td>
<td>Original Orange - 2018-07-17</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 1

GSTOOLS QUICKSTART

Get in Touch!

1.1 Purpose

GeoStatTools provides geostatistical tools for various purposes:

- random field generation
- simple, ordinary, universal and external drift kriging
- conditioned field generation
- incompressible random vector field generation
- (automated) variogram estimation and fitting
- directional variogram estimation and modelling
- data normalization and transformation
- many readily provided and even user-defined covariance models
- metric spatio-temporal modelling
- plotting and exporting routines
1.2 Installation

conda

GSTools can be installed via conda on Linux, Mac, and Windows. Install the package by typing the following command in a command terminal:

```bash
conda install gstools
```

In case conda forge is not set up for your system yet, see the easy to follow instructions on conda forge. Using conda, the parallelized version of GSTools should be installed.

pip

GSTools can be installed via pip on Linux, Mac, and Windows. On Windows you can install WinPython to get Python and pip running. Install the package by typing the following into command in a command terminal:

```bash
pip install gstools
```

To get the latest development version you can install it directly from GitHub:

```bash
pip install git+git://github.com/GeoStat-Framework/GSTools.git@main
```

If something went wrong during installation, try the --flag from pip.

Speeding up GSTools by parallelization

To enable the OpenMP support, you have to provide a C compiler and OpenMP. Parallel support is controlled by an environment variable GSTOOLS_BUILD_PARALLEL, that can be 0 or 1 (interpreted as 0 if not present). GSTools then needs to be installed from source:

```bash
export GSTOOLS_BUILD_PARALLEL=1
pip install --no-binary=gstools gstools
```

Note, that the --no-binary=gstools option forces pip to not use a wheel for GSTools.

For the development version, you can do almost the same:

```bash
export GSTOOLS_BUILD_PARALLEL=1
pip install git+git://github.com/GeoStat-Framework/GSTools.git@main
```

Using experimental GSTools-Core for even more speed

You can install the optional dependency GSTools-Core, which is a re-implementation of the main algorithms used in GSTools. The new package uses the language Rust and it should be faster (in some cases by orders of magnitude), safer, and it will potentially completely replace the current standard implementation in Cython. Once the package GSTools-Core is available on your machine, it will be used by default. In case you want to switch back to the Cython implementation, you can set gstools.config.USE_RUST=False in your code. This also works at runtime. You can install the optional dependency e.g. by

```bash
pip install gstools[rust]
```

or by manually installing the package

```bash
pip install gstools-core
```

GSTools-Core will automatically use all your cores in parallel, without having to use OpenMP or a local C compiler. In case you want to restrict the number of threads used, you can set the environment variable RAYON_NUM_THREADS to the desired amount.
1.3 Citation

If you are using GSTools in your publication please cite our paper:

You can cite the Zenodo code publication of GSTools by:

If you want to cite a specific version, have a look at the Zenodo site.

1.4 Tutorials and Examples

The documentation also includes some tutorials, showing the most important use cases of GSTools, which are:

- Random Field Generation
- The Covariance Model
- Variogram Estimation
- Random Vector Field Generation
- Kriging
- Conditioned random field generation
- Field transformations
- Geographic Coordinates
- Spatio-Temporal Modelling
- Normalizing Data
- Miscellaneous examples

1.5 Spatial Random Field Generation

The core of this library is the generation of spatial random fields. These fields are generated using the randomisation method, described by Heße et al. 2014.
Examples

Gaussian Covariance Model

This is an example of how to generate a 2 dimensional spatial random field (SRF) with a Gaussian covariance model.

```python
import gstools as gs
# structured field with a size 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.plot()
```

GSTools also provides support for geographic coordinates. This works perfectly well with cartopy.

```python
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import gstools as gs
# define a structured field by latitude and longitude
lat = lon = range(-80, 81)
model = gs.Gaussian(latlon=True, len_scale=777, rescale=gs.EARTH_RADIUS)
srf = gs.SRF(model, seed=12345)
field = srf.structured((lat, lon))
# Orthographic plotting with cartopy
ax = plt.subplot(projection=ccrs.Orthographic(-45, 45))
cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree())
ax.coastlines()
ax.set_global()
plt.colorbar(cont)
```

![Field 2D structured: (100, 100)](image)
A similar example but for a three dimensional field is exported to a VTK file, which can be visualized with ParaView or PyVista in Python:

```python
import gstools as gs
# structured field with a size 100x100x100 and a grid-size of 1x1x1
x = y = z = range(100)
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2))
srf = gs.SRF(model)
srf((x, y, z), mesh_type='structured')
srf.vtk_export('3d_field')  # Save to a VTK file for ParaView

mesh = srf.to_pyvista()  # Create a PyVista mesh for plotting in Python
mesh.contour(isosurfaces=8).plot()
```
1.6 Estimating and fitting variograms

The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function.

All covariance models can be used to fit given variogram data by a simple interface.

Examples

This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance model again.

```python
import numpy as np
import gstools as gs

# generate a synthetic field with an exponential model
x = np.random.RandomState(19970221).rand(100) * 100.
y = np.random.RandomState(20011012).rand(100) * 100.
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))

# estimate the variogram of the field
bin_center, gamma = gs.vario_estimate((x, y), field)

# fit the variogram with a stable model. (no nugget fitted)
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)

# output
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
print(fit_model)
```

Which gives:

```
Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], _alpha=1.09)
```
1.7 Kriging and Conditioned Random Fields

An important part of geostatistics is Kriging and conditioning spatial random fields to measurements. With conditioned random fields, an ensemble of field realizations with their variability depending on the proximity of the measurements can be generated.

Example

For better visualization, we will condition a 1d field to a few “measurements”, generate 100 realizations and plot them:

```python
import numpy as np
import matplotlib.pyplot as plt
import gstools as gs

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

# conditioned spatial random field class
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
krige = gs.krige.Ordinary(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)

# same output positions for all ensemble members
grid_pos = np.linspace(0.0, 15.0, 151)
cond_srf.set_pos(grid_pos)

# seeded ensemble generation
seed = gs.random.MasterRNG(20170519)
for i in range(100):
    field = cond_srf(seed=seed(), store=f'field_{i}')
    plt.plot(grid_pos, field, color='k', alpha=0.1)
plt.scatter(cond_pos, cond_val, color='k')
plt.show()
```
1.8 User defined covariance models

One of the core-features of GSTools is the powerful `CovModel` class, which allows to easily define covariance models by the user.

Example

Here we re-implement the Gaussian covariance model by defining just the correlation function, which takes a non-dimensional distance $h = r/l$

```python
import numpy as np
import gstools as gs
# use CovModel as the base-class
class Gau(gs.CovModel):
    def cor(self, h):
        return np.exp(-h**2)
```

And that’s it! With `Gau` you now have a fully working covariance model, which you could use for field generation or variogram fitting as shown above.
1.9 Incompressible Vector Field Generation

Using the original Kraichnan method, incompressible random spatial vector fields can be generated.

Example

```python
import numpy as np
import gstools as gs
x = np.arange(100)
y = np.arange(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator='VectorField', seed=19841203)
srf((x, y), mesh_type='structured')
srf.plot()
```

yielding

![Field 2D structured: (2, 100, 100)](image)
1.10 VTK/PyVista Export

After you have created a field, you may want to save it to file, so we provide a handy VTK export routine using the `vtk_export()` or you could create a VTK/PyVista dataset for use in Python with `to_pyvista()` method:

```python
import gstools as gs
x, y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.vtk_export("field")  # Saves to a VTK file
mesh = srf.to_pyvista()  # Create a VTK/PyVista dataset in memory
mesh.plot()
```

Which gives a RectilinearGrid VTK file `field.vtr` or creates a PyVista mesh in memory for immediate 3D plotting in Python.

1.11 Requirements

- Numpy >= 1.14.5
- SciPy >= 1.1.0
- hankel >= 1.0.2
- emcee >= 3.0.0
- pyevtk >= 1.1.1
- meshio>=4.0.3, <5.0
Optional

- GSTools-Core >= 0.2.0
- matplotlib
- pyvista

Contact

You can contact us via info@geostat-framework.org.

1.12 License

LGPLv3
In the following you will find several Tutorials on how to use GSTools to explore its whole beauty and power.

2.1 Random Field Generation

The main feature of GSTools is the spatial random field generator SRF, which can generate random fields following a given covariance model. The generator provides a lot of nice features, which will be explained in the following.

GSTools generates spatial random fields with a given covariance model or semi-variogram. This is done by using the so-called randomization method. The spatial random field is represented by a stochastic Fourier integral and its discretised modes are evaluated at random frequencies.

GSTools supports arbitrary and non-isotropic covariance models.

Examples

A Very Simple Example

We are going to start with a very simple example of a spatial random field with an isotropic Gaussian covariance model and following parameters:

- variance $\sigma^2 = 1$
- correlation length $\lambda = 10$

First, we set things up and create the axes for the field. We are going to need the SRF class for the actual generation of the spatial random field. But SRF also needs a covariance model and we will simply take the $Gaussian$ model.

```python
import gstools as gs
x = y = range(100)

model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, seed=20170519)
```

Now we create the covariance model with the parameters σ^2 and λ and hand it over to SRF. By specifying a seed, we make sure to create reproducible results:

```python
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, seed=20170519)
```

With these simple steps, everything is ready to create our first random field. We will create the field on a structured grid (as you might have guessed from the x and y), which makes it easier to plot.
field = srf.structured([x, y])
srf.plot()

Wow, that was pretty easy!

Total running time of the script: (0 minutes 0.719 seconds)

Creating an Ensemble of Fields

Creating an ensemble of random fields would also be a great idea. Let's reuse most of the previous code.

We will set the position tuple pos before generation to reuse it afterwards.

```python
import matplotlib.pyplot as pt
import numpy as np
import gstools as gs
x = y = np.arange(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf.set_pos([x, y], "structured")
```

This time, we did not provide a seed to SRF, as the seeds will be used during the actual computation of the fields. We will create four ensemble members, for better visualisation, save them in to srf class and in a first step, we will be using the loop counter as the seeds.
ens_no = 4
for i in range(ens_no):
 srf(seed=i, store=f"field{i}")

Now let’s have a look at the results. We can access the fields by name or index:

fig, ax = pt.subplots(2, 2, sharex=True, sharey=True)
ax = ax.flatten()
for i in range(ens_no):
 ax[i].imshow(srf[i].T, origin="lower")
pt.show()

Using better Seeds

It is not always a good idea to use incrementing seeds. Therefore GSTools provides a seed generator `MasterRNG`. The loop, in which the fields are generated would then look like

```python
from gstools.random import MasterRNG
seed = MasterRNG(20170519)
for i in range(ens_no):
    srf(seed=seed(), store=f"better_field{i}")
```

Total running time of the script: (0 minutes 3.782 seconds)
Creating Fancier Fields

Only using Gaussian covariance fields gets boring. Now we are going to create much rougher random fields by using an exponential covariance model and we are going to make them anisotropic.

The code is very similar to the previous examples, but with a different covariance model class \textit{Exponential}. As model parameters we are using following:

- variance $\sigma^2 = 1$
- correlation length $\lambda = (12, 3)^T$
- rotation angle $\theta = \pi/8$

```python
import numpy as np
import gstools as gs

x = y = np.arange(100)
model = gs.Exponential(dim=2, var=1, len_scale=[12.0, 3.0], angles=np.pi / 8)
srf = gs.SRF(model, seed=20170519)
srf.structured([x, y])
srf.plot()
```

The anisotropy ratio could also have been set with

```python
model = gs.Exponential(dim=2, var=1, len_scale=12, anis=0.25, angles=np.pi / 8)
```

Total running time of the script: (0 minutes 0.997 seconds)
Using an Unstructured Grid

For many applications, the random fields are needed on an unstructured grid. Normally, such a grid would be read in, but we can simply generate one and then create a random field at those coordinates.

```python
import numpy as np
import gstools as gs

Creating our own unstructured grid

seed = gs.random.MasterRNG(19970221)
rng = np.random.RandomState(seed())
x = rng.randint(0, 100, size=10000)
y = rng.randint(0, 100, size=10000)

model = gs.Exponential(dim=2, var=1, len_scale=[12, 3], angles=np.pi / 8)
srf = gs.SRF(model, seed=20170519)
field = srf((x, y))
srf.vtk_export("field")
# Or create a PyVista dataset
# mesh = srf.to_pyvista()

ax = srf.plot()
ax.set_aspect("equal")
```

Comparing this image to the previous one, you can see that be using the same seed, the same field can be computed on different grids.

Total running time of the script: (0 minutes 1.067 seconds)
Merging two Fields

We can even generate the same field realisation on different grids. Let’s try to merge two unstructured rectangular fields.

```python
import numpy as np
import gstools as gs

# creating our own unstructured grid
seed = gs.random.MasterRNG(19970221)
rng = np.random.RandomState(seed())
x = rng.randint(0, 100, size=10000)
y = rng.randint(0, 100, size=10000)

model = gs.Exponential(dim=2, var=1, len_scale=[12, 3], angles=np.pi / 8)
srf = gs.SRF(model, seed=20170519)
field1 = srf((x, y))
srf.plot()
```

But now we extend the field on the right hand side by creating a new unstructured grid and calculating a field with the same parameters and the same seed on it:

```python
# new grid
seed = gs.random.MasterRNG(20011012)
rng = np.random.RandomState(seed())
x2 = rng.randint(99, 150, size=10000)
y2 = rng.randint(20, 80, size=10000)

field2 = srf((x2, y2))
ax = srf.plot()
```

(continues on next page)
ax.tricontourf(x, y, field1.T, levels=256)
ax.set_aspect("equal")

The slight mismatch where the two fields were merged is merely due to interpolation problems of the plotting routine. You can convince yourself be increasing the resolution of the grids by a factor of 10.

Of course, this merging could also have been done by appending the grid point (x_2, y_2) to the original grid (x, y) before generating the field. But one application scenario would be to generate huge fields, which would not fit into memory anymore.

Total running time of the script: (0 minutes 2.284 seconds)

Generating Fields on Meshes

GSTools provides an interface for meshes, to support meshio and ogs5py meshes.

When using meshio, the generated fields will be stored immediately in the mesh container.

There are two options to generate a field on a given mesh:

- `points="points"` will generate a field on the mesh points
- `points="centroids"` will generate a field on the cell centroids

In this example, we will generate a simple mesh with the aid of meshzoo.

```python
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import meshio
import meshzoo
import numpy as np
```
import gstools as gs

generate a triangulated hexagon with meshzoo
points, cells = meshzoo.ngon(6, 4)
mesh = meshio.Mesh(points, {"triangle": cells})

Now we prepare the SRF class as always. We will generate an ensemble of fields on the generated mesh.

number of fields
fields_no = 12
model setup
model = gs.Gaussian(dim=2, len_scale=0.5)
srf = gs.SRF(model, mean=1)

To generate fields on a mesh, we provide a separate method: `SRF.mesh`. First we generate fields on the mesh-centroids controlled by a seed. You can specify the field name by the keyword `name`.

for i in range(fields_no):
 srf.mesh(mesh, points="centroids", name="c-field-\{i\}".format(i), seed=i)

Now we generate fields on the mesh-points again controlled by a seed.

for i in range(fields_no):
 srf.mesh(mesh, points="points", name="p-field-\{i\}".format(i), seed=i)

To get an impression we now want to plot the generated fields. Luckily, matplotlib supports triangular meshes.

triangulation = tri.Triangulation(points[:, 0], points[:, 1], cells)
figure setup
cols = 4
rows = int(np.ceil(fields_no / cols))

Cell data can be easily visualized with matplotlibs `tripcolor`. To highlight the cell structure, we use `triplot`.

fig = plt.figure(figsize=[2 * cols, 2 * rows])
for i, field in enumerate(mesh.cell_data, i):
 ax = fig.add_subplot(rows, cols, i)
 ax.tripcolor(triangulation, mesh.cell_data[field][0])
 ax.triplot(triangulation, linewidth=0.5, color="k")
 ax.set_aspect("equal")
fig.tight_layout()
Point data is plotted via `tricontourf`.

```python
fig = plt.figure(figsize=[2 * cols, 2 * rows])
for i, field in enumerate(mesh.point_data, 1):
    ax = fig.add_subplot(rows, cols, i)
    ax.tricontourf(triangulation, mesh.point_data[field])
    ax.triplot(triangulation, linewidth=0.5, color="k")
    ax.set_aspect("equal")
fig.tight_layout()
plt.show()
```
Last but not least, `meshio` can be used for what it does best: Exporting. Tada!

```python
mesh.write("mesh_ensemble.vtk")
```

Out:

```
WARNING:root:VTK requires 3D points, but 2D points given. Appending 0 third component.
```

Total running time of the script: (0 minutes 1.508 seconds)

Using PyVista meshes

PyVista is a helper module for the Visualization Toolkit (VTK) that takes a different approach on interfacing with VTK through NumPy and direct array access.

It provides mesh data structures and filtering methods for spatial datasets, makes 3D plotting simple and is built for large/complex data geometries.

The `Field.mesh` method enables easy field creation on PyVista meshes used by the `SRF` or `Krige` class.

```python
import pyvista as pv
import gstools as gs
```

We create a structured grid with PyVista containing 50 segments on all three axes each with a length of 2 (whatever unit).

```python
dim, spacing = (50, 50, 50), (2, 2, 2)
grid = pv.UniformGrid(dim, spacing)
```
Now we set up the SRF class as always. We’ll use an anisotropic model.

```
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2))
srf = gs.SRF(model, seed=19970221)
```

The PyVista mesh can now be directly passed to the `SRF.mesh` method. When dealing with meshes, one can choose if the field should be generated on the mesh-points (“points”) or the cell-centroids (“centroids”). In addition we can set a name, under which the resulting field is stored in the mesh.

```
srf.mesh(grid, points="points", name="random-field")
```

Now we have access to PyVista’s abundancy of methods to explore the field.

Note: PyVista is not working on readthedocs, but you can try it out yourself by uncommenting the following line of code.

```
# grid.contour(isosurfaces=8).plot()
```

The result should look like this:

![Field Image](image)

Total running time of the script: (0 minutes 6.456 seconds)
Higher Dimensions

GSTools provides experimental support for higher dimensions.

Anisotropy is the same as in lower dimensions:

- in n dimensions we need $(n-1)$ anisotropy ratios

Rotation on the other hand is a bit more complex. With increasing dimensions more and more rotation angles are added in order to properly describe the rotated axes of anisotropy.

By design the first rotation angles coincide with the lower ones:

- 2D (rotation in x-y plane) -> 3D: first angle describes xy-plane rotation
- 3D (Tait-Bryan angles) -> 4D: first 3 angles coincide with Tait-Bryan angles

By increasing the dimension from n to $(n+1)$, n angles are added:

- 2D (1 angle) -> 3D: 3 angles (2 added)
- 3D (3 angles) -> 4D: 6 angles (3 added)

The following list of rotation-planes are described by the list of angles in the model:

1. x-y plane
2. x-z plane
3. y-z plane
4. x-v plane
5. y-v plane
6. z-v plane
7. ...

The rotation direction in these planes have alternating signs in order to match Tait-Bryan in 3D.

Let’s have a look at a 4D example, where we naively add a 4th dimension.

```python
import matplotlib.pyplot as plt
import gstools as gs

dim = 4
size = 20
pos = [range(size)] * dim
model = gs.Exponential(dim=dim, len_scale=5)
srf = gs.SRF(model, seed=20170519)
field = srf.structured(pos)

In order to “prove” correctness, we can calculate an empirical variogram of the generated field and fit our model to it.

```
bin_center, vario = gs.vario_estimate(
 pos, field, sampling_size=2000, mesh_type="structured"
)
model.fit_variogram(bin_center, vario)
print(model)
```

Out:

```
Exponential(dim=4, var=1.0, len_scale=4.95, nugget=1.24e-11)
```

As you can see, the estimated variance and length scale match our input quite well.

Let’s have a look at the fit and a x-y cross-section of the 4D field:
GSTools also provides plotting routines for higher dimensions. Fields are shown by 2D cross-sections, where other dimensions can be controlled via sliders.

```python
srf.plot()
```
2.2 The Covariance Model

One of the core-features of GSTools is the powerful `CovModel` class, which allows you to easily define arbitrary covariance models by yourself. The resulting models provide a bunch of nice features to explore the covariance models.

A covariance model is used to characterize the semi-variogram, denoted by $\gamma$, of a spatial random field. In GSTools, we use the following form for an isotropic and stationary field:

$$\gamma(r) = \sigma^2 \cdot \left(1 - \text{cor} \left( \frac{s \cdot r}{\ell} \right) \right) + n$$

Where:

- $r$ is the lag distance
- $\ell$ is the main correlation length
- $s$ is a scaling factor for unit conversion or normalization
- $\sigma^2$ is the variance
- $n$ is the nugget (subscale variance)
- $\text{cor}(h)$ is the normalized correlation function depending on the non-dimensional distance $h = s \cdot \frac{r}{\ell}$

Depending on the normalized correlation function, all covariance models in GSTools are providing the following functions:

- $\rho(r) = \text{cor} \left( \frac{s \cdot r}{\ell} \right)$ is the so called correlation function
- $C(r) = \sigma^2 \cdot \rho(r)$ is the so called covariance function, which gives the name for our GSTools class

**Note:** We are not limited to isotropic models. GSTools supports anisotropy ratios for length scales in orthogonal transversal directions like:

- $x_0$ (main direction)
- $x_1$ (1. transversal direction)
- $x_2$ (2. transversal direction)
- ...

These main directions can also be rotated. Just have a look at the corresponding examples.

**Provided Covariance Models**

The following standard covariance models are provided by GSTools

- `Gaussian(dim, var, len_scale, nugget, ...)` The Gaussian covariance model.
- `Exponential(dim, var, len_scale, nugget, ...)` The Exponential covariance model.
- `Matern(dim, var, len_scale, nugget, anis, ...)` The Matérn covariance model.
- `Stable(dim, var, len_scale, nugget, anis, ...)` The stable covariance model.
- `Rational(dim, var, len_scale, nugget, ...)` The rational quadratic covariance model.
- `Cubic(dim, var, len_scale, nugget, ...)` The Cubic covariance model.
- `Linear(dim, var, len_scale, nugget, ...)` The bounded linear covariance model.
- `Circular(dim, var, len_scale, nugget, ...)` The circular covariance model.
- `Spherical(dim, var, len_scale, ...)` The Spherical covariance model.
- `HyperSpherical(dim, var, len_scale, ...)` The Hyper-Spherical covariance model.
- `SuperSpherical(dim, var, len_scale, ...)` The Super-Spherical covariance model.
- `JBessel(dim, var, len_scale, nugget, anis, ...)` The J-Bessel hole model.
- `TPLSimple(dim, var, len_scale, nugget, ...)` The simply truncated power law model.
As a special feature, we also provide truncated power law (TPL) covariance models

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPLGaussian</td>
<td>Truncated-Power-Law with Gaussian modes.</td>
</tr>
<tr>
<td>TPLExponential</td>
<td>Truncated-Power-Law with Exponential modes.</td>
</tr>
<tr>
<td>TPLStable</td>
<td>Truncated-Power-Law with Stable modes.</td>
</tr>
</tbody>
</table>

These models provide a lower and upper length scale truncation for superpositioned models.

Examples

Introductory example

Let us start with a short example of a self defined model (Of course, we provide a lot of predefined models [See: gstools.covmodel], but they all work the same way). Therefore we reimplement the Gaussian covariance model by defining just the “normalized” correlation function:

```python
import numpy as np
import gstools as gs

use CovModel as the base-class
class Gau(gs.CovModel):
 def cor(self, h):
 return np.exp(-h ** 2)

model = Gau(dim=2, var=2.0, len_scale=10)
model.plot()
```

Here the parameter \( h \) stands for the normalized range \( r / \text{len.scale} \). Now we can instantiate this model:

```python
model = Gau(dim=2, var=2.0, len_scale=10)
```

To have a look at the variogram, let’s plot it:

```python
model.plot()
```
This is almost identical to the already provided *Gaussian* model. There, a scaling factor is implemented so the `len_scale` coincides with the integral scale:

```python
>>> gau_model = gs.Gaussian(dim=2, var=2.0, len_scale=10)
>>> gau_model.plot()
```
Parameters

We already used some parameters, which every covariance models has. The basic ones are:

- **dim**: dimension of the model
- **var**: variance of the model (on top of the subscale variance)
- **len_scale**: length scale of the model
- **nugget**: nugget (subscale variance) of the model

These are the common parameters used to characterize a covariance model and are therefore used by every model in GSTools. You can also access and reset them:

```python
print("old model:", model)
model.dim = 3
model.var = 1
model.len_scale = 15
model.nugget = 0.1
print("new model:", model)
```

Out:

```
old model: Gau(dim=2, var=2.0, len_scale=10.0, nugget=0.0)
new model: Gau(dim=3, var=1.0, len_scale=15.0, nugget=0.1)
```

**Note:**

- The sill of the variogram is calculated by \( \text{sill} = \text{variance} + \text{nugget} \). So we treat the variance as everything **above** the nugget, which is sometimes called **partial sill**.
• A covariance model can also have additional parameters.

Total running time of the script: (0 minutes 0.262 seconds)

Basic Methods

The covariance model class CovModel of GSTools provides a set of handy methods.

One of the following functions defines the main characterization of the variogram:

- **CovModel.variogram**: The variogram of the model given by
  \[ \gamma(r) = \sigma^2 \cdot (1 - \rho(r)) + n \]

- **CovModel.covariance**: The (auto-)covariance of the model given by
  \[ C(r) = \sigma^2 \cdot \rho(r) \]

- **CovModel.correlation**: The (auto-)correlation (or normalized covariance) of the model given by
  \[ \rho(r) \]

- **CovModel.cor**: The normalized correlation taking a normalized range given by:
  \[ \text{cor} \left( \frac{r}{\ell} \right) = \rho(r) \]

As you can see, it is the easiest way to define a covariance model by giving a correlation function as demonstrated in the introductory example. If one of the above functions is given, the others will be determined:
import gstools as gs

model = gs.Exponential(dim=3, var=2.0, len_scale=10, nugget=0.5)
ax = model.plot("variogram")
model.plot("covariance", ax=ax)
model.plot("correlation", ax=ax)

Total running time of the script: (0 minutes 0.133 seconds)

Anisotropy and Rotation

The internally used (semi-) variogram represents the isotropic case for the model. Nevertheless, you can provide anisotropy ratios by:

```
import gstools as gs

model = gs.Gaussian(dim=3, var=2.0, len_scale=10, anis=0.5)
print(model.anis)
print(model.len_scale_vec)
```

```
[1. 0.5]
[10. 10. 5.]
```

As you can see, we defined just one anisotropy-ratio and the second transversal direction was filled up with 1.

You can get the length-scales in each direction by the attribute `CovModel.len_scale_vec`. For full control you can set a list of anisotropy ratios: `anis=[0.5, 0.4]`.

Alternatively you can provide a list of length-scales:

```
model = gs.Gaussian(dim=3, var=2.0, len_scale=[10, 5, 4])
model.plot("vario_spatial")
print("Anisotropy representations:")
print("Anis. ratios:", model.anis)
print("Main length scale", model.len_scale)
print("All length scales", model.len_scale_vec)
```
Anisotropy representations:
Anis. ratios: [0.5 0.4]
Main length scale 10.0
All length scales [10. 5. 4.]

Rotation Angles

The main directions of the field don’t have to coincide with the spatial directions $x$, $y$ and $z$. Therefore you can provide rotation angles for the model:

```python
model = gs.Gaussian(dim=3, var=2.0, len_scale=[10, 2], angles=2.5)
model.plot("vario_spatial")
print("Rotation angles", model.angles)
```
Out:

Rotation angles [2.5 0. 0.]

Again, the angles were filled up with 0. to match the dimension and you could also provide a list of angles. The number of angles depends on the given dimension:

- in 1D: no rotation performable
- in 2D: given as rotation around z-axis
- in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)
- in nD: See the random field example about higher dimensions

Total running time of the script: ( 0 minutes 0.839 seconds)

Spectral methods

The spectrum of a covariance model is given by:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \int C(||r||) e^{i\hat{k} \cdot r} d^n r \]

Since the covariance function \( C(r) \) is radially symmetric, we can calculate this by the Hankel-transformation:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \frac{(2\pi)^{n/2}}{(bk)^{n/2-1}} \int_0^\infty r^{n/2-1} C(r) J_{n/2-1}(bk r) r dr \]

Where \( k = ||k|| \).

Depending on the spectrum, the spectral-density is defined by:

\[ \hat{S}(k) = \frac{S(k)}{\sigma^2} \]
You can access these methods by:

```python
import gstools as gs
model = gs.Gaussian(dim=3, var=2.0, len_scale=10)
ax = model.plot("spectrum")
model.plot("spectral_density", ax=ax)
```

**Note:** The spectral-density is given by the radius of the input phase. But it is not a probability density function for the radius of the phase. To obtain the pdf for the phase-radius, you can use the methods `CovModel.spectral_rad_pdf` or `CovModel.ln_spectral_rad_pdf` for the logarithm.

The user can also provide a cdf (cumulative distribution function) by defining a method called `spectral_rad_cdf` and/or a ppf (percent-point function) by `spectral_rad_ppf`.

The attributes `CovModel.has_cdf` and `CovModel.has_ppf` will check for that.

**Total running time of the script:** (0 minutes 0.130 seconds)
Different scales

Besides the length-scale, there are many other ways of characterizing a certain scale of a covariance model. We provide two common scales with the covariance model.

Integral scale

The integral scale of a covariance model is calculated by:

\[ I = \int_0^\infty \rho(r)dr \]

You can access it by:

```python
import gstools as gs
model = gs.Stable(dim=3, var=2.0, len_scale=10)
print("Main integral scale:", model.integral_scale)
print("All integral scales:", model.integral_scale_vec)
```

Out:

```
Main integral scale: 9.027452929509336
All integral scales: [9.02745293 9.02745293 9.02745293]
```

You can also specify integral length scales like the ordinary length scale, and len_scale/anis will be recalculated:

```python
model = gs.Stable(dim=3, var=2.0, integral_scale=[10, 4, 2])
print("Anisotropy ratios:", model.anis)
print("Main length scale:", model.len_scale)
print("All length scales:", model.len_scale_vec)
print("Main integral scale:", model.integral_scale)
print("All integral scales:", model.integral_scale_vec)
```

Out:

```
Anisotropy ratios: [0.4 0.2]
Main length scale: 11.077321674324725
All length scales: [11.07732167 4.43092867 2.21546433]
Main integral scale: 10.0
All integral scales: [10. 4. 2.]
```

Percentile scale

Another scale characterizing the covariance model, is the percentile scale. It is the distance, where the normalized variogram reaches a certain percentage of its sill.

```python
model = gs.Stable(dim=3, var=2.0, len_scale=10)
per_scale = model.percentile_scale(0.9)
int_scale = model.integral_scale
len_scale = model.len_scale
print("90% Percentile scale:", per_scale)
print("Integral scale:", int_scale)
print("Length scale:", len_scale)
```

Out:

```
90% Percentile scale: 17.437215135964117
Integral scale: 9.027452929509336
Length scale: 10.0
```
**Note:** The nugget is neglected by the percentile scale.

### Comparison

```python
ax = model.plot()
ax.axhline(1.8, color="k", label="90% percentile")
ax.axvline(per_scale, color="k", linestyle="--", label="90% percentile scale")
ax.axvline(int_scale, color="k", linestyle=".-", label="integral scale")
ax.axvline(len_scale, color="k", linestyle=":`", label="length scale")
ax.legend()
```

Total running time of the script: (0 minutes 0.155 seconds)

### Additional Parameters

Let’s pimp our self-defined model $Gau$ from the introductory example by setting the exponent as an additional parameter:

$$\rho(r) := \exp \left( - \left( \frac{r}{\ell} \right)^\alpha \right)$$

This leads to the so-called **stable** covariance model and we can define it by

```python
import numpy as np
import gstools as gs
```

(continues on next page)
As you can see, we override the method `CovModel.default_opt_arg` to provide a standard value for the optional argument `alpha`. We can access it in the correlation function by `self.alpha`.

Now we can instantiate this model by either setting `alpha` implicitly with the default value or explicitly:

```python
model1 = Stab(dim=2, var=2.0, len_scale=10)
model2 = Stab(dim=2, var=2.0, len_scale=10, alpha=0.5)
ax = model1.plot()
model2.plot(ax=ax)
```

Apparently, the parameter `alpha` controls the slope of the variogram and consequently the roughness of a generated random field.

**Note:** You don’t have to override the `CovModel.default_opt_arg`, but you will get a `ValueError` if you don’t set it on creation.

**Total running time of the script:** (0 minutes 0.138 seconds)
Fitting variogram data

The model class comes with a routine to fit the model-parameters to given variogram data. In the following we will use the self defined stable model from a previous example.

```python
import numpy as np
import gstools as gs

class Stab(gs.CovModel):
 def default_opt_arg(self):
 return {'alpha': 1.5}

 def cor(self, h):
 return np.exp(-h ** self.alpha)

Exemplary variogram data (e.g. estimated from field observations)
bins = [1.0, 3.0, 5.0, 7.0, 9.0, 11.0]
est_vario = [0.2, 0.5, 0.6, 0.8, 0.8, 0.9]
fitting model
model = Stab(dim=2)
we have to provide boundaries for the parameters
model.set_arg_bounds(alpha=[0, 3])
results, pcov = model.fit_variogram(bins, est_vario, nugget=False)
print("Results:", results)
```

Out:

```
Results: {'var': 1.0245739832546161, 'len_scale': 5.081592175463755, 'nugget': 0.0, 'alpha': 0.906704090624874}
```

```python
ax = model.plot()
ax.scatter(bins, est_vario, color="k", label="sample variogram")
ax.legend()
```
As you can see, we have to provide boundaries for the parameters. As a default, the following bounds are set:

- additional parameters: \([-\infty, \infty]\)
- variance: \([0.0, \infty]\)
- len_scale: \([0.0, \infty]\)
- nugget: \([0.0, \infty]\)

Also, you can deselect parameters from fitting, so their predefined values will be kept. In our case, we fixed a nugget of 0.0, which was set by default. You can deselect any standard or optional argument of the covariance model. The second return value \(pcov\) is the estimated covariance of \(popt\) from the used scipy routine \texttt{scipy.optimize.curve_fit}.

You can use the following methods to manipulate the used bounds:

- \texttt{CovModel.default_opt_arg_bounds()} Provide default boundaries for optional arguments.
- \texttt{CovModel.default_arg_bounds()} Provide default boundaries for arguments.
- \texttt{CovModel.set_arg_bounds([check_args])} Set bounds for the parameters of the model.
- \texttt{CovModel.check_arg_bounds()} Check arguments to be within their given bounds.

You can override the \texttt{CovModel.default_opt_arg_bounds} to provide standard bounds for your additional parameters.

To access the bounds you can use:

- \texttt{CovModel.var_bounds} Bounds for the variance.
- \texttt{CovModel.len_scale_bounds} Bounds for the length scale.
- \texttt{CovModel.nugget_bounds} Bounds for the nugget.
- \texttt{CovModel.opt_arg_bounds} Bounds for the optional arguments.
Table 4 – continued from previous page

| CovModel.arg_bounds | Bounds for all parameters. |

Total running time of the script: ( 0 minutes 0.155 seconds)

### 2.3 Variogram Estimation

Estimating the spatial correlations is an important part of geostatistics. These spatial correlations can be expressed by the variogram, which can be estimated with the subpackage `gstools.variogram`. The variograms can be estimated on structured and unstructured grids.

The same (semi-)variogram as *The Covariance Model* is being used by this subpackage.

#### Examples

**Fit Variogram**

```python
import numpy as np
import gstools as gs

Generate a synthetic field with an exponential model.
x = np.random.RandomState(19970221).rand(1000) * 100.0
y = np.random.RandomState(20011012).rand(1000) * 100.0
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))

Estimate the variogram of the field with 40 bins.
bins = np.arange(40)
bin_center, gamma = gs.vario_estimate((x, y), field, bins)

Fit the variogram with a stable model (no nugget fitted).
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)

Plot the fitting result.
ax = fit_model.plot(x_max=40)
ax.scatter(bin_center, gamma)
print(fit_model)
```

40 Chapter 2. GSTools Tutorials
Finding the best fitting variogram model

```python
import numpy as np
from matplotlib import pyplot as plt
import gstools as gs

Generate a synthetic field with an exponential model.
```
x = np.random.RandomState(19970221).rand(1000) * 100.0
y = np.random.RandomState(20011012).rand(1000) * 100.0
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))
```

Estimate the variogram of the field with 40 bins and plot the result.
```
bins = np.arange(40)
bin_center, gamma = gs.vario_estimate((x, y), field, bins)
```

Define a set of models to test.
models = {
 "Gaussian": gs.Gaussian,
 "Exponential": gs.Exponential,
 "Matern": gs.Matern,
 "Stable": gs.Stable,
 "Rational": gs.Rational,
 "Circular": gs.Circular,
 "Spherical": gs.Spherical,
 "SuperSpherical": gs.SuperSpherical,
 "JBessel": gs.JBessel,
}
scores = {}

Iterate over all models, fit their variogram and calculate the r2 score.

```python
# plot the estimated variogram
plt.scatter(bin_center, gamma, color="k", label="data")
ax = plt.gca()

# fit all models to the estimated variogram
for model in models:
    fit_model = models[model](dim=2)
    para, pcov, r2 = fit_model.fit_variogram(bin_center, gamma, return_r2=True)
    fit_model.plot(x_max=40, ax=ax)
    scores[model] = r2
```

Create a ranking based on the score and determine the best models

```python
ranking = [
    (k, v)
]
```
```python
for k, v in sorted(scores.items(), key=lambda item: item[1], reverse=True):
    print("RANKING")
for i, (model, score) in enumerate(ranking, 1):
    print(i, model, score)
plt.show()
```

Out:

RANKING
1 Stable 0.9821836192997987
2 Matern 0.9817602690670714
3 SuperSpherical 0.981405161772397
4 Exponential 0.9804074707352965
5 Rational 0.9771067080325656
6 Spherical 0.9733371670900062
7 Circular 0.9672526098784104
8 Gaussian 0.9592818084019383
9 JBessel 0.9583119496215735

Multi-field variogram estimation

In this example, we demonstrate how to estimate a variogram from multiple fields on the same point-set that should have the same statistical properties.

```python
import matplotlib.pyplot as plt
import numpy as np
import gstools as gs

x = np.random.RandomState(19970221).rand(1000) * 100.0
y = np.random.RandomState(20011012).rand(1000) * 100.0
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0)

Generate two synthetic fields with an exponential model.

field1 = srf((x, y), seed=19970221)
field2 = srf((x, y), seed=20011012)
fields = [field1, field2]

Now we estimate the variograms for both fields individually and then again simultaneously with only one call.

```python
bins = np.arange(40)
bin_center, gamma1 = gs.vario_estimate((x, y), field1, bins)
bin_center, gamma2 = gs.vario_estimate((x, y), field2, bins)
bin_center, gamma = gs.vario_estimate((x, y), fields, bins)

Now we demonstrate that the mean variogram from both fields coincides with the joined estimated one.

```python
plt.plot(bin_center, gamma1, label="field 1")
plt.plot(bin_center, gamma2, label="field 2")
plt.plot(bin_center, gamma, label="joined fields")
plt.plot(bin_center, 0.5 * (gamma1 + gamma2), ":", label="field 1+2 mean")
plt.legend()
plt.show()
```
Directional variogram estimation and fitting in 2D

In this example, we demonstrate how to estimate a directional variogram by setting the direction angles in 2D. Afterwards we will fit a model to this estimated variogram and show the result.

```python
import numpy as np
from matplotlib import pyplot as plt
import gstools as gs

Generating synthetic field with anisotropy and a rotation of 22.5 degree.

```python
angle = np.pi / 8
model = gs.Exponential(dim=2, len_scale=[10, 5], angles=angle)
x = y = range(101)
srf = gs.SRF(model, seed=123456)
field = srf((x, y), mesh_type="structured")
```

Now we are going to estimate a directional variogram with an angular tolerance of 11.25 degree and a bandwidth of 8.

```python
bins = range(0, 40, 2)
bin_center, dir_vario, counts = gs.vario_estimate((x, y), field, bins, direction=gs.rotated_main_axes(dim=2, angles=angle), angles_tol=np.pi / 16, bandwidth=8,
```

Total running time of the script: (0 minutes 1.129 seconds)
Afterwards we can use the estimated variogram to fit a model to it:

```python
print("Original:")
print(model)
model.fit_variogram(bin_center, dir_vario)
print("Fitted:")
print(model)
```

Out:

```
Original:
Exponential(dim=2, var=1.0, len_scale=10.0, nugget=0.0, anis=[0.5], angles=[0.393])
Fitted:
Exponential(dim=2, var=0.942, len_scale=9.14, nugget=1.1e-17, anis=[0.529], angles=[0.393])
```

Plotting.

```python
fig, (ax1, ax2) = plt.subplots(1, 2, figsize=[10, 5])
ax1.scatter(bin_center, dir_vario[0], label="emp. vario: pi/8")
ax1.scatter(bin_center, dir_vario[1], label="emp. vario: pi*5/8")
ax1.legend(loc="lower right")
model.plot("vario_axis", axis=0, ax=ax1, x_max=40, label="fit on axis 0")
model.plot("vario_axis", axis=1, ax=ax1, x_max=40, label="fit on axis 1")
ax1.set_title("Fitting an anisotropic model")
srf.plot(ax=ax2)
plt.show()
```

Without fitting a model, we see that the correlation length in the main direction is greater than the transversal one.

**Total running time of the script:** (0 minutes 7.367 seconds)
Directional variogram estimation and fitting in 3D

In this example, we demonstrate how to estimate a directional variogram by setting the estimation directions in 3D.

Afterwards we will fit a model to this estimated variogram and show the result.

```python
import matplotlib.pyplot as plt
import numpy as np
from mpl_toolkits.mplot3d import Axes3D
import gstools as gs

Generating synthetic field with anisotropy and rotation by Tait-Bryan angles.
dim = 3
rotation around z, y, x
angles = [np.deg2rad(90), np.deg2rad(45), np.deg2rad(22.5)]
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=angles)
x = y = z = range(50)
pos = (x, y, z)
srf = gs.SRF(model, seed=1001)
field = srf.structured(pos)

Here we generate the axes of the rotated coordinate system to get an impression what the rotation angles do.
main_axes = gs.rotated_main_axes(dim, angles)
axis1, axis2, axis3 = main_axes

Now we estimate the variogram along the main axes. When the main axes are unknown, one would need to sample multiple directions and look for the one with the longest correlation length (flattest gradient). Then check the transversal directions and so on.
bin_center, dir_vario, counts = gs.vario_estimate(pos, field, direction=main_axes, bandwidth=10, sampling_size=2000, sampling_seed=1001, mesh_type="structured", return_counts=True)

Afterwards we can use the estimated variogram to fit a model to it. Note, that the rotation angles need to be set beforehand.
print("Original:")
print(model)
model.fit_variogram(bin_center, dir_vario)
print("Fitted:")
print(model)
```

Out:

```
Original:
Gaussian(dim=3, var=1.0, len_scale=16.0, nugget=0.0, anis=[0.5, 0.25], angles=[1.57, 0.785, 0.393])
Fitted:
Gaussian(dim=3, var=0.972, len_scale=13.0, nugget=0.0138, anis=[0.542, 0.281], angles=[1.57, 0.785, 0.393])
```
Plotting main axes and the fitted directional variogram.

```python
fig = plt.figure(figsize=[10, 5])
ax1 = fig.add_subplot(121, projection=Axes3D.name)
ax2 = fig.add_subplot(122)

ax1.plot([0, axis1[0]], [0, axis1[1]], [0, axis1[2]], label="0.")
ax1.plot([0, axis2[0]], [0, axis2[1]], [0, axis2[2]], label="1.")
ax1.plot([0, axis3[0]], [0, axis3[1]], [0, axis3[2]], label="2.")
ax1.set_xlim(-1, 1)
ax1.set_ylim(-1, 1)
ax1.set_zlim(-1, 1)
ax1.set_xlabel("X")
ax1.set_ylabel("Y")
ax1.set_zlabel("Z")
ax1.set_title("Tait-Bryan main axis")
ax1.legend(loc="lower left")

x_max = max(bin_center)
ax2.scatter(bin_center, dir_vario[0], label="0. axis")
ax2.scatter(bin_center, dir_vario[1], label="1. axis")
ax2.scatter(bin_center, dir_vario[2], label="2. axis")
model.plot("vario_axis", axis=0, ax=ax2, x_max=x_max, label="fit on axis 0")
model.plot("vario_axis", axis=1, ax=ax2, x_max=x_max, label="fit on axis 1")
model.plot("vario_axis", axis=2, ax=ax2, x_max=x_max, label="fit on axis 2")
ax2.set_title("Fitting an anisotropic model")
ax2.legend()

plt.show()
```

Also, let’s have a look at the field.

```python
srf.plot()
```

2.3. Variogram Estimation
GeoStatTools Documentation, Release 1.3.4

Total running time of the script: (0 minutes 7.961 seconds)

Fit Variogram with automatic binning

```python
import numpy as np
import gstools as gs

Generate a synthetic field with an exponential model.
x = np.random.RandomState(19970221).rand(1000) * 100.0
y = np.random.RandomState(20011012).rand(1000) * 100.0
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))
print(field.var())
```

Out:
```
1.6791948750716688
```

Estimate the variogram of the field with automatic binning.

```python
bin_center, gamma = gs.vario_estimate((x, y), field)
print("estimated bin number:", len(bin_center))
print("maximal bin distance:", max(bin_center))
```

Out:
estimated bin number: 21
maximal bin distance: 45.88516574202333

Fit the variogram with a stable model (no nugget fitted).

```python
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
print(fit_model)
```

Out:

```
Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, alpha=1.09)
```

Plot the fitting result.

```python
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
```

Total running time of the script: 0 minutes 0.379 seconds
Automatic binning with lat-lon data

In this example we demonstrate automatic binning for a tiny data set containing temperature records from Germany (See the detailed DWD example for more information on the data).

We use a data set from 20 meteo-stations choosen randomly.

```python
import numpy as np
import gstools as gs

lat, lon, temperature
data = np.array(
 [[52.9336, 8.237, 15.7],
 [48.6159, 13.0506, 13.9],
 [52.4853, 7.9126, 15.1],
 [50.7446, 9.345, 17.0],
 [52.9437, 12.8518, 21.9],
 [53.8633, 8.1275, 11.9],
 [47.8342, 10.8667, 11.4],
 [51.0881, 12.9326, 17.2],
 [48.406, 11.3117, 12.9],
 [49.7273, 8.1164, 17.2],
 [49.4691, 11.8546, 13.4],
 [48.0197, 12.2925, 13.9],
 [50.4237, 7.4202, 18.1],
 [53.0316, 13.9908, 21.3],
 [53.8412, 13.6846, 21.3],
 [54.6792, 13.4343, 17.4],
 [49.9694, 9.9114, 18.6],
 [51.3745, 11.292, 20.2],
 [47.8774, 11.3643, 12.7],
 [50.5908, 12.7139, 15.8],
]
)
pos = data.T[:2] # lat, lon
field = data.T[2] # temperature

Since the overall range of these meteo-stations is too low, we can use the data-variance as additional information during the fit of the variogram.

```python
emp_v = gs.vario_estimate(pos, field, latlon=True)
sph = gs.Spherical(latlon=True, rescale=gs.EARTH_RADIUS)
sph.fit_variogram(*emp_v, sill=np.var(field))
ax = sph.plot(x_max=2 * np.max(emp_v[0]))
ax.scatter(*emp_v, label="Empirical variogram")
ax.legend()
print(sph)
```
As we can see, the variogram fitting was successful and providing the data variance helped finding the right length-scale.

Now, we’ll use this covariance model to interpolate the given data with ordinary kriging.

```python
# enclosing box for data points
grid_lat = np.linspace(np.min(pos[0]), np.max(pos[0]))
grid_lon = np.linspace(np.min(pos[1]), np.max(pos[1]))

# ordinary kriging
krige = gs.krige.Ordinary(sph, pos, field)
krige((grid_lat, grid_lon), mesh_type="structured")
ax = krige.plot()

# plotting lat on y-axis and lon on x-axis
ax.scatter(pos[1], pos[0], 50, c=field, edgecolors="k", label="input")
ax.legend()
```
Looks good, doesn’t it?

This workflow is also implemented in the *Krige* class, by setting `fit_variogram=True`. Then the whole procedure shortens:

```python
krige = gs.krige.Ordinary(sph, pos, field, fit_variogram=True)
krige.structured((grid_lat, grid_lon))

# plot the result
krige.plot()
# show the fitting results
print(krige.model)
```
This example shows that setting up variogram estimation and kriging routines is straightforward with GSTools!

Total running time of the script: (0 minutes 0.627 seconds)

2.4 Random Vector Field Generation

In 1970, Kraichnan was the first to suggest a randomization method. For studying the diffusion of single particles in a random incompressible velocity field, he came up with a randomization method which includes a projector which ensures the incompressibility of the vector field.

Without loss of generality we assume that the mean velocity \bar{U} is oriented towards the direction of the first basis vector e_1. Our goal is now to generate random fluctuations with a given covariance model around this mean velocity. And at the same time, making sure that the velocity field remains incompressible or in other words, ensure $\nabla \cdot U = 0$. This can be done by using the randomization method we already know, but adding a projector to every mode being summed:

$$U(x) = \bar{U} e_1 - \sqrt{\frac{\sigma^2}{N}} \sum_{i=1}^{N} p(k_i) [Z_{1,i} \cos ((k_i, x)) + \sin ((k_i, x))]$$

with the projector

$$p(k_i) = e_1 - \frac{k_i k_1}{k^2}$$

By calculating $\nabla \cdot U = 0$, it can be verified, that the resulting field is indeed incompressible.
Examples

Generating a Random 2D Vector Field

As a first example we are going to generate a 2d vector field with a Gaussian covariance model on a structured grid:

```python
import numpy as np
import gstools as gs

# the grid
x = np.arange(100)
y = np.arange(100)

# a smooth Gaussian covariance model
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator="VectorField", seed=19841203)
srf((x, y), mesh_type="structured")
srf.plot()
```

Let us have a look at the influence of the covariance model. Choosing the exponential model and keeping all other parameters the same

```python
# a rougher exponential covariance model
model2 = gs.Exponential(dim=2, var=1, len_scale=10)
srf.model = model2
srf((x, y), mesh_type="structured", seed=19841203)
srf.plot()
```
and we see, that the wiggles are much “rougher” than the smooth Gaussian ones.

Applications

One great advantage of the Kraichnan method is, that after some initializations, one can compute the velocity field at arbitrary points, online, with hardly any overhead. This means, that for a Lagrangian transport simulation for example, the velocity can be evaluated at each particle position very efficiently and without any interpolation. These field interpolations are a common problem for Lagrangian methods.

Total running time of the script: (0 minutes 2.562 seconds)

Generating a Random 3D Vector Field

In this example we are going to generate a random 3D vector field with a Gaussian covariance model. The mesh on which we generate the field will be externally defined and it will be generated by PyVista.

```python
import pyvista as pv
import gstools as gs

# mainly for setting a white background
pv.set_plot_theme("document")

create a uniform grid with PyVista

dim, spacing, origin = (40, 30, 10), (1, 1, 1), (-10, 0, 0)
mesh = pv.UniformGrid(dim, spacing, origin)

create an incompressible random 3d velocity field on the given mesh with added mean velocity in x-direction
```
model = gs.Gaussian(dim=3, var=3, len_scale=1.5)
srf = gs.SRF(model, mean=(0.5, 0, 0), generator="VectorField", seed=198412031)
srf.mesh(mesh, points="points", name="Velocity")

Now, we can do the plotting

streamlines = mesh.streamlines(
 "Velocity",
 terminal_speed=0.0,
 n_points=800,
 source_radius=2.5,
)

set a fancy camera position
cpos = [(25, 22, 17), (0, 10, 0), (0, 0, 1)]
p = pv.Plotter()
adding an outline might help navigating in 3D space
p.add_mesh(mesh.outline(), color="k")
p.add_mesh(
 streamlines.tube(radius=0.005),
 show_scalar_bar=False,
 diffuse=0.5,
 ambient=0.5,
)

Out:

Note: PyVista is not working on readthedocs, but you can try it out yourself by uncommenting the following line of code.

p.show(cpos=cpos)

The result should look like this:
2.5 Kriging

The subpackage `gstools.krige` provides routines for Gaussian process regression, also known as kriging. Kriging is a method of data interpolation based on predefined covariance models.

The aim of kriging is to derive the value of a field at some point x_0, when there are fixed observed values $z(x_1) \ldots z(x_n)$ at given points x_i.

The resulting value z_0 at x_0 is calculated as a weighted mean:

$$z_0 = \sum_{i=1}^{n} w_i \cdot z_i$$

The weights $W = (w_1, \ldots, w_n)$ depend on the given covariance model and the location of the target point.

The different kriging approaches provide different ways of calculating W.

The `Krige` class provides everything in one place and you can switch on/off the features you want:

- **unbiased**: the weights have to sum up to 1. If true, this results in Ordinary kriging, where the mean is estimated, otherwise it will result in Simple kriging, where the mean has to be given.

- **drift functions**: you can give a polynomial order or a list of self defined functions representing the internal drift of the given values. This drift will be fitted internally during the kriging interpolation. This results in Universal kriging.

- **ext_drift**: You can also give an external drift per point to the routine. In contrast to the internal drift, that is evaluated at the desired points with the given functions, the external drift has to be given for each point from an “external” source. This results in ExtDrift kriging.

- **trend, mean, normalizer**: These are used to pre- and post-process data. If you already have fitted a trend model that is provided as a callable function, you can give it to the kriging routine. Normalizer are power-transformations to gain normality. mean behaves similar to trend but is applied at another position:

1. conditioning data is de-trended (substracting trend)
2. detrended conditioning data is then normalized (in order to follow a normal distribution)
3. normalized conditioning data is set to zero mean (subtracting mean)
Consequently, when there is no normalizer given, trend and mean are the same thing and only one should be used. **Detrended** kriging is a shortcut to provide only a trend and simple kriging with normal data.

- **exact** and **cond_err**: To incorporate the nugget effect and/or measurement errors, one can set **exact** to **False** and provide either individual measurement errors for each point or set the nugget as a constant measurement error everywhere.

- **pseudo_inv**: Sometimes the inversion of the kriging matrix can be numerically unstable. This occurs for examples in cases of redundant input values. In this case we provide a switch to use the pseudo-inverse of the matrix. Then redundant conditional values will automatically be averaged.

Note: All mentioned features can be combined within the **Krige** class. All other kriging classes are just shortcuts to this class with a limited list of input parameters.

The routines for kriging are almost identical to the routines for spatial random fields, with regard to their handling. First you define a covariance model, as described in *The Covariance Model*, then you initialize the kriging class with this model:

```python
import gstools as gs

# conditions
cond_pos = [...]  # point positions
cond_val = [...]  # point values
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
krig = gs.krige.Simple(model, cond_pos=cond_pos, cond_val=cond_val, mean=1)
```

The resulting field instance `krig` has the same methods as the **SRF** class. You can call it to evaluate the kriged field at different points, you can plot the latest field or you can export the field and so on.

Provided Kriging Methods

The following kriging methods are provided within the submodule **gstools.krige**.

- **Krige**(model, cond_pos, cond_val[, ...]) A Swiss Army knife for kriging.
- **Simple**(model, cond_pos, cond_val[, mean, ...]) Simple kriging.
- **Ordinary**(model, cond_pos, cond_val[, ...]) Ordinary kriging.
- **Universal**(model, cond_pos, cond_val[, ...]) Universal kriging.
- **ExtDrift**(model, cond_pos, cond_val, ext_drift) External drift kriging (EDK).
- **Detrended**(model, cond_pos, cond_val, trend) Detrended simple kriging.

Examples

Simple Kriging

Simple kriging assumes a known mean of the data. For simplicity we assume a mean of 0, which can be achieved by subtracting the mean from the observed values and subsequently adding it to the resulting data.

The resulting equation system for \(W \) is given by:

\[
W = \begin{pmatrix}
 c(x_1, x_1) & \cdots & c(x_1, x_n) \\
 \vdots & \ddots & \vdots \\
 c(x_n, x_1) & \cdots & c(x_n, x_n)
\end{pmatrix}^{-1}
\begin{pmatrix}
 c(x_1, x_0) \\
 \vdots \\
 c(x_n, x_0)
\end{pmatrix}
\]

Thereby \(c(x_i, x_j) \) is the covariance of the given observations.
Example

Here we use simple kriging in 1D (for plotting reasons) with 5 given observations/conditions. The mean of the field has to be given beforehand.

```python
import numpy as np
from gstools import Gaussian, krige

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

# resulting grid
gridx = np.linspace(0.0, 15.0, 151)

# spatial random field class
model = Gaussian(dim=1, var=0.5, len_scale=2)

krig = krige.Simple(model, mean=1, cond_pos=cond_pos, cond_val=cond_val)
krig(gridx)

ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.legend()
```

Field 1D: (151,)

Total running time of the script: 0 minutes 0.144 seconds

2.5. Kriging
Ordinary Kriging

Ordinary kriging will estimate an appropriate mean of the field, based on the given observations/conditions and the covariance model used.

The resulting system of equations for W is given by:

$$
\begin{pmatrix}
W \\
\mu
\end{pmatrix}
=
\begin{pmatrix}
c(x_1,x_1) & \cdots & c(x_1,x_n) & 1 \\
\vdots & \ddots & \vdots & \vdots \\
c(x_n,x_1) & \cdots & c(x_n,x_n) & 1 \\
1 & \cdots & 1 & 0
\end{pmatrix}
^{-1}
\begin{pmatrix}
c(x_1,x_0) \\
\vdots \\
c(x_n,x_0)
\end{pmatrix}
$$

Thereby $c(x_i,x_j)$ is the covariance of the given observations and μ is a Lagrange multiplier to minimize the kriging error and estimate the mean.

Example

Here we use ordinary kriging in 1D (for plotting reasons) with 5 given observations/conditions. The estimated mean can be accessed by krig.mean.

```python
import numpy as np
from gstools import Gaussian, krige

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

# resulting grid
gridx = np.linspace(0.0, 15.0, 151)

# spatial random field class
model = Gaussian(dim=1, var=0.5, len_scale=2)

krig = krige.Ordinary(model, cond_pos=cond_pos, cond_val=cond_val)
krig(gridx)

ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.legend()
```
Interface to PyKrige

To use fancier methods like regression kriging, we provide an interface to PyKrige (≥v1.5), which means you can pass a GSTools covariance model to the kriging routines of PyKrige.

To demonstrate the general workflow, we compare ordinary kriging of PyKrige with the corresponding GSTools routine in 2D:

```python
import numpy as np
from matplotlib import pyplot as plt
from pykrige.ok import OrdinaryKriging
import gstools as gs

# conditioning data
cond_x = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_y = [1.2, 0.6, 3.2, 4.4, 3.8]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

# grid definition for output field
gridx = np.arange(0.0, 5.5, 0.1)
gridy = np.arange(0.0, 6.5, 0.1)

A GSTools based Gaussian covariance model:

```python
model = gs.Gaussian(
 dim=2, len_scale=1, anis=0.2, angles=-0.5, var=0.5, nugget=0.1
)
```
Ordinary Kriging with PyKrige

One can pass the defined GSTools model as variogram model, which will not be fitted to the given data. By providing the GSTools model, rotation and anisotropy are also automatically defined:

```python
OK1 = OrdinaryKriging(cond_x, cond_y, cond_val, variogram_model=model)
z1, ss1 = OK1.execute("grid", gridx, gridy)
plt.imshow(z1, origin="lower")
plt.show()
```

Ordinary Kriging with GSTools

The Ordinary kriging class is provided by GSTools as a shortcut to define ordinary kriging with the general Krige class.

PyKrige’s routines are using exact kriging by default (when given a nugget). To reproduce this behavior in GSTools, we have to set exact=True.

```python
OK2 = gs.krige.Ordinary(model, [cond_x, cond_y], cond_val, exact=True)
OK2.structured([gridx, gridy])
ax = OK2.plot()
ax.set_aspect("equal")
```
Total running time of the script: 0 minutes 0.370 seconds

Compare Kriging

```python
import matplotlib.pyplot as plt
import numpy as np
from gstools import Gaussian, krige

conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

resulting grid
gridx = np.linspace(0.0, 15.0, 151)

A gaussian variogram model.

model = Gaussian(dim=1, var=0.5, len_scale=2)

Two kriged fields. One with simple and one with ordinary kriging.

kr1 = krige.Simple(model=model, mean=1, cond_pos=cond_pos, cond_val=cond_val)
k2 = krige.Ordinary(model=model, cond_pos=cond_pos, cond_val=cond_val)
kr1(gridx)
k2(gridx)

plt.plot(gridx, kr1.field, label="simple kriged field")
plt.plot(gridx, kr2.field, label="ordinary kriged field")
plt.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
```

(continues on next page)
plt.legend()
plt.show()

Total running time of the script: 0 minutes 0.146 seconds
import numpy as np
from gstools import SRF, Gaussian, krige

# synthetic conditions with a drift
drift_model = Gaussian(dim=1, len_scale=4)
drift = SRF(drift_model, seed=1010)
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
ext_drift = drift(cond_pos)
cond_val = ext_drift * 2 + 1
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
grid_drift = drift(gridx)
# kriging
model = Gaussian(dim=1, var=2, len_scale=4)
krig = krige.ExtDrift(model, cond_pos, cond_val, ext_drift)
krig(gridx, ext_drift=grid_drift)
ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.plot(gridx, grid_drift, label="drift")
ax.legend()

Total running time of the script: ( 0 minutes 0.153 seconds)
Universal Kriging

You can give a polynomial order or a list of self defined functions representing the internal drift of the given values. This drift will be fitted internally during the kriging interpolation.

In the following we are creating artificial data, where a linear drift was added. The resulting samples are then used as input for Universal kriging.

The “linear” drift is then estimated during the interpolation. To access only the estimated mean/drift, we provide a switch `only_mean` in the call routine.

```python
import numpy as np
from gstools import SRF, Gaussian, krige

synthetic conditions with a drift
drift_model = Gaussian(dim=1, var=0.1, len_scale=2)
drift = SRF(drift_model, seed=101)
cond_pos = np.linspace(0.1, 8, 10)
cond_val = drift(cond_pos) + cond_pos * 0.1 + 1

resulting grid
gridx = np.linspace(0.0, 15.0, 151)
drift_field = drift(gridx) + gridx * 0.1 + 1

kriging
model = Gaussian(dim=1, var=0.1, len_scale=2)
krig = krige.Universal(model, cond_pos, cond_val, "linear")
krig(gridx)
ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.plot(gridx, drift_field, "--", label="original field")
```
mean = krig(gridx, only_mean=True)
ax.plot(gridx, mean, label="estimated drift")
ax.legend()

Total running time of the script: (0 minutes 0.169 seconds)

Detrended Kriging

Field 1D: (151.)

import numpy as np
from gstools import SRF, Gaussian, krig

def trend(x):
    """Example for a simple linear trend."""
    return x * 0.1 + 1

# synthetic conditions with trend/drift
drift_model = Gaussian(dim=1, var=0.1, len_scale=2)
drift = SRF(drift_model, seed=101)
cond_pos = np.linspace(0.1, 8, 10)
cond_val = drift(cond_pos) + trend(cond_pos)
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
drift_field = drift(gridx) + trend(gridx)
```python
kriging
model = Gaussian(dim=1, var=0.1, len_scale=2)
krieg_trend = krige.Detrended(model, cond_pos, cond_val, trend)
krieg_trend(gridx)
ax = krieg_trend.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.plot(gridx, trend(gridx), ":", label="linear trend")
ax.plot(gridx, drift_field, ":", label="original field")
ax.legend()
```

Total running time of the script: 0.164 seconds

Detrended Ordinary Kriging

![Field 1D: (151,)](image)

```python
import numpy as np
from gstools import SRF, Gaussian, krige
def trend(x):
 """Example for a simple linear trend."""
 return x * 0.1 + 1
```

# synthetic conditions with trend/drift
drift_model = Gaussian(dim=1, var=0.1, len_scale=2)
drift = SRF(drift_model, seed=101)
cond_pos = np.linspace(0.1, 8, 10)
cond_val = drift(cond_pos) + trend(cond_pos)
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
drift_field = drift(gridx) + trend(gridx)
# kriging
model = Gaussian(dim=1, var=0.1, len_scale=2)
krig_trend = krige.Ordinary(model, cond_pos, cond_val, trend=trend)
krig_trend(gridx)
ax = krig_trend.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.plot(gridx, trend(gridx), ":", label="linear trend")
ax.plot(gridx, drift_field, "--", label="original field")
ax.legend()

Total running time of the script: 0 minutes 0.165 seconds

Incorporating measurement errors

To incorporate the nugget effect and/or given measurement errors, one can set exact to False and provide either individual measurement errors for each point or set the nugget as a constant measurement error everywhere.

In the following we will show the influence of the nugget and measurement errors.

import numpy as np
import gstools as gs
# conditions
cond_pos = [0.3, 1.1, 1.9, 3.3, 4.7]
cond_val = [0.47, 0.74, 0.56, 1.47, 1.74]
cond_err = [0.01, 0.0, 0.1, 0.05, 0]
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
# spatial random field class
model = gs.Gaussian(dim=1, var=0.9, len_scale=1, nugget=0.1)
Here we will use Simple kriging (unbiased=False) to interpolate the given conditions.

krig = gs.Krige(
    model=model,
    cond_pos=cond_pos,
    cond_val=cond_val,
    mean=1,
    unbiased=False,
    exact=False,
    cond_err=cond_err,
)
krig(gridx)

Let’s plot the data. You can see, that the estimated values differ more from the input, when the given measurement errors get bigger. In addition we plot the standard deviation.

ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.fill_between(
    gridx,
    # plus/minus standard deviation (70 percent confidence interval)
    krig.field - np.sqrt(krig.krige_var),
    krig.field + np.sqrt(krig.krige_var),
    alpha=0.3,
)
Redundant data and pseudo-inverse

It can happen, that the kriging system gets numerically unstable. One reason could be, that the input data contains redundant conditioning points that hold different values.

To smoothly deal with such situations, you can use the pseudo inverse for the kriging matrix, which is enabled by default.

This will result in the average value for the redundant data.

Example

In the following we have two different values at the same location. The resulting kriging field will hold the average at this point.

```python
import numpy as np
from gstools import Gaussian, krige

conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 1.1]
```

Total running time of the script: 0 minutes 0.143 seconds
cond_val = [0.47, 0.56, 0.74, 1.47, 1.14]
# resulting grid
gridx = np.linspace(0.0, 8.0, 81)
# spatial random field class
model = Gaussian(dim=1, var=0.5, len_scale=1)

krig = krig.Ordinary(model, cond_pos=cond_pos, cond_val=cond_val)
krig(gridx)

ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.legend()

```
Field 1D: (81.)
```

Total running time of the script: ( 0 minutes 0.140 seconds)

2.6 Conditioned Fields

Kriged fields tend to approach the field mean outside the area of observations. To generate random fields, that coincide with given observations, but are still random according to a given covariance model away from the observations proximity, we provide the generation of conditioned random fields.

The idea behind conditioned random fields builds up on kriging. First we generate a field with a kriging method, then we generate a random field, with 0 as mean and 1 as variance that will be multiplied with the kriging standard deviation.

To do so, you can instantiate a `CondSRF` class with a configured `Krige` class.

The setup of the conditioned random field should be as follows:
GeoStatTools Documentation, Release 1.3.4

krige = gs.Krige(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)
field = cond_srf(grid)

Examples
Conditioning with Ordinary Kriging
Here we use ordinary kriging in 1D (for plotting reasons) with 5 given observations/conditions, to generate an
ensemble of conditioned random fields.
import matplotlib.pyplot as plt
import numpy as np
import gstools as gs
# condtions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]
gridx = np.linspace(0.0, 15.0, 151)

The conditioned spatial random field class depends on a Krige class in order to handle the conditions. This is
created as described in the kriging tutorial.
Here we use a Gaussian covariance model and ordinary kriging for conditioning the spatial random field.
model = gs.Gaussian(dim=1, var=0.5, len_scale=1.5)
krige = gs.krige.Ordinary(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)
cond_srf.set_pos(gridx)

To generate the ensemble we will use a seed-generator. We can specify individual names for each field by the
keyword store:
seed = gs.random.MasterRNG(20170519)
for i in range(100):
cond_srf(seed=seed(), store=f"f{i}")
label = "Conditioned ensemble" if i == 0 else None
plt.plot(gridx, cond_srf[f"f{i}"], color="k", alpha=0.1, label=label)
fields = [cond_srf[f"f{i}"] for i in range(100)]
plt.plot(gridx, cond_srf.krige(only_mean=True), label="estimated mean")
plt.plot(gridx, np.mean(fields, axis=0), linestyle=":", label="Ensemble mean")
plt.plot(gridx, cond_srf.krige.field, linestyle="dashed", label="kriged field")
plt.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
# 99 percent confidence interval
conf = gs.tools.confidence_scaling(0.99)
plt.fill_between(
gridx,
cond_srf.krige.field - conf * np.sqrt(cond_srf.krige.krige_var),
cond_srf.krige.field + conf * np.sqrt(cond_srf.krige.krige_var),
alpha=0.3,
label="99% confidence interval",
)
plt.legend()
plt.show()

72

Chapter 2. GSTools Tutorials


As you can see, the kriging field coincides with the ensemble mean of the conditioned random fields and the estimated mean is the mean of the far-field.

**Total running time of the script:** (0 minutes 1.210 seconds)

### Creating an Ensemble of conditioned 2D Fields

Let’s create an ensemble of conditioned random fields in 2D.

```python
import matplotlib.pyplot as plt
import numpy as np
import gstools as gs

conditioning data (x, y, value)
cond_pos = [[[0.3, 1.9], [1.2, 0.6]], [[1.1, 3.3], [3.2, 4.4]], [[3.3, 4.7], [4.4, 3.8]]]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

grid definition for output field
x = np.arange(0, 5, 0.1)
y = np.arange(0, 5, 0.1)

model = gs.Gaussian(dim=2, var=0.5, len_scale=5, anis=0.5, angles=-0.5)
krige = gs.Krige(model, cond_pos=cond_pos, cond_val=cond_val)
cond_srf = gs.CondSRF(krige)
cond_srf.set_pos([x, y], "structured")

To generate the ensemble we will use a seed-generator. By specifying `store=["fld"+str(i)", False, False]`, only the conditioned field is stored with the specified name. The raw random field and the raw kriging field is not stored. This way, we can access each conditioned field by index `cond_srf[i]`:
Now let’s have a look at the pairwise differences between the generated fields. We will see, that they coincide at the given conditions.

```python
fig, ax = plt.subplots(ens_no + 1, ens_no + 1, figsize=(8, 8))
# plotting kwargs for scatter and image
vmax = np.max(cond_srf.all_fields)
sc_kw = dict(c=cond_val, edgecolors="k", vmin=0, vmax=vmax)
im_kw = dict(extent=2 * [0, 5], origin="lower", vmin=0, vmax=vmax)
for i in range(ens_no):
    # conditioned fields and conditions
    ax[i + 1, 0].imshow(cond_srf[i].T, **im_kw)
    ax[i + 1, 0].scatter(*cond_pos, **sc_kw)
    ax[i + 1, 0].set_ylabel(f"Field {i}", fontsize=10)
ax[0, i + 1].imshow(cond_srf[i].T, **im_kw)
ax[0, i + 1].scatter(*cond_pos, **sc_kw)
ax[0, i + 1].set_title(f"Field {i}", fontsize=10)
# absolute differences
for j in range(ens_no):
    ax[i + 1, j + 1].imshow(np.abs(cond_srf[i] - cond_srf[j]).T, **im_kw)
# beautify plots
ax[0, 0].axis("off")
for a in ax.flatten():
    a.set_xticklabels([]), a.set_yticklabels([])
    a.set_xticks([]), a.set_yticks([])
fig.subplots_adjust(wspace=0, hspace=0)
fig.show()
```
To check if the generated fields are correct, we can have a look at their names:

```python
print(cond_srf.field_names)
```

Out:

```
['fld0', 'fld1', 'fld2', 'fld3']
```

Total running time of the script: (0 minutes 1.120 seconds)
2.7 Field transformations

The generated fields of gstools are ordinary Gaussian random fields. In application there are several transformations to describe real world problems in an appropriate manner.

GStools provides a submodule `gstools.transform` with a range of common transformations:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>binary(fld[, divide, upper, lower, field, ...])</code></td>
<td>Binary transformation.</td>
</tr>
<tr>
<td><code>discrete(fld, values[, thresholds, field, ...])</code></td>
<td>Discrete transformation.</td>
</tr>
<tr>
<td><code>boxcox(fld[, lmbda, shift, field, store, ...])</code></td>
<td>(Inverse) Box-Cox transformation to denormalize data.</td>
</tr>
<tr>
<td><code>zinnharvey(fld[, conn, field, store, ...])</code></td>
<td>Zinn and Harvey transformation to connect low or high values.</td>
</tr>
<tr>
<td><code>normal_force_moments(fld[, field, store, ...])</code></td>
<td>Force moments of a normal distributed field.</td>
</tr>
<tr>
<td><code>normal_to_lognormal(fld[, field, store, ...])</code></td>
<td>Transform normal distribution to log-normal distribution.</td>
</tr>
<tr>
<td><code>normal_to_uniform(fld[, field, store, ...])</code></td>
<td>Transform normal distribution to uniform distribution on [0, 1].</td>
</tr>
<tr>
<td><code>normal_to_arcsin(fld[, a, b, field, store, ...])</code></td>
<td>Transform normal distribution to the bimodal arcsin distribution.</td>
</tr>
<tr>
<td><code>normal_to_uquad(fld[, a, b, field, store, ...])</code></td>
<td>Transform normal distribution to U-quadratic distribution.</td>
</tr>
<tr>
<td><code>apply_function(fld, function[, field, ...])</code></td>
<td>Apply function as field transformation.</td>
</tr>
</tbody>
</table>

All the transformations take a field class, that holds a generated field, as input and will manipulate this field inplace or store it with a given name.

Simply apply a transformation to a field class:

```python
import gstools as gs  
...
srf = gs.SRF(model)
srf(...)
gs.transform.normal_to_lognormal(srf)
```

Or use the provided wrapper:

```python
import gstools as gs  
...
srf = gs.SRF(model)
srf(...)
srf.transform("lognormal")
```

Examples

log-normal fields

Here we transform a field to a log-normal distribution:

See `transform.normal_to_lognormal`
import gstools as gs

structured field with a size of 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, seed=20170519)
srf.structured([x, y])
srf.transform("normal_to_lognormal") # also "lognormal" works
srf.plot()

Total running time of the script: (0 minutes 0.679 seconds)

binary fields

Here we transform a field to a binary field with only two values. The dividing value is the mean by default and the upper and lower values are derived to preserve the variance.

See transform.binary
import gstools as gs

structured field with a size of 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, seed=20170519)
srf.structured([x, y])
srf.transform("binary")
srf.plot()

Total running time of the script: (0 minutes 0.718 seconds)

Discrete fields

Here we transform a field to a discrete field with values. If we do not give thresholds, the pairwise means of the
given values are taken as thresholds. If thresholds are given, arbitrary values can be applied to the field.

See transform.discrete

import numpy as np
import gstools as gs

Structured field with a size of 100x100 and a grid-size of 0.5x0.5
x = y = np.arange(200) * 0.5
model = gs.Gaussian(dim=2, var=1, len_scale=5)
srf = gs.SRF(model, seed=20170519)
srf.structured([x, y])

Create 5 equidistantly spaced values, thresholds are the arithmetic means
```python
values1 = np.linspace(np.min(srf.field), np.max(srf.field), 5)
srf.transform("discrete", store="f1", values=values1)
srf.plot("f1")
```

Field 2D structured: (200, 200)

Calculate thresholds for equal shares but apply different values to the separated classes

```python
values2 = [0, -1, 2, -3, 4]
srf.transform("discrete", store="f2", values=values2, thresholds="equal")
srf.plot("f2")
```
Create user defined thresholds and apply different values to the separated classes

```python
values3 = [0, 1, 10]
thresholds = [-1, 1]
srf.transform("discrete", store="f3", values=values3, thresholds=thresholds)
srf.plot("f3")
```
Here, we transform a field with the so called “Zinn & Harvey” transformation presented in Zinn & Harvey (2003). With this transformation, one could overcome the restriction that in ordinary Gaussian random fields the mean values are the ones being the most connected.

See `transform.zinnharvey`
import gstools as gs

structured field with a size of 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, seed=20170519)
srf.structured([x, y])
srf.transform("zinnharvey", conn="high")
srf.plot()

Bimodal fields

We provide two transformations to obtain bimodal distributions:

- arcsin.
- uquad.

Both transformations will preserve the mean and variance of the given field by default.

See: transform.normal_to_arcsin and transform.normal_to_uquad
import gstools as gs

structured field with a size of 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, seed=20170519)
field = srf.structured([x, y])
srf.transform("normal_to_arcsin") # also "arcsin" works
srf.plot()

Total running time of the script: (0 minutes 0.752 seconds)

Combinations

You can combine different transformations simply by successively applying them.

Here, we first force the single field realization to hold the given moments, namely mean and variance. Then we apply the Zinn & Harvey transformation to connect the low values. Afterwards the field is transformed to a binary field and last but not least, we transform it to log-values.

We can select the desired field by its name and we can define an output name to store the field.

If you don’t specify field and store everything happens inplace.

import gstools as gs

structured field with a size of 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, mean=-9, seed=20170519)
srf.structured([x, y])
srf.transform("force_moments", field="field", store="f_forced")
srf.transform("zinnharvey", field="f_forced", store="f_zinnharvey", conn="low")
srf.transform("binary", field="f_zinnharvey", store="f_binary")
srf.transform("lognormal", field="f_binary", store="f_result")
srf.plot(field="f_result")

Field 2D structured: (100, 100)

The resulting field could be interpreted as a transmissivity field, where the values of low permeability are the ones being the most connected and only two kinds of soil exist.

All stored fields can be accessed and plotted by name:

```python
print("Max binary value:", srf.f_binary.max())
srf.plot(field="f_zinnharvey")
```
GSTools provides support for geographic coordinates given by:

- latitude \(\text{lat} \): specifies the north–south position of a point on the Earth’s surface
- longitude \(\text{lon} \): specifies the east–west position of a point on the Earth’s surface

If you want to use this feature for field generation or Kriging, you have to set up a geographical covariance Model by setting \(\text{latlon=True} \) in your desired model (see \texttt{CovModel}):

```python
import numpy as np
import gstools as gs
model = gs.Gaussian(latlon=True, var=2, len_scale=np.pi / 16)
```

By doing so, the model will use the associated \textit{Yadrenko} model on a sphere (see \texttt{here}). The \texttt{len_scale} is given in radians to scale the arc-length. In order to have a more meaningful length scale, one can use the \texttt{rescale} argument:

```python
import gstools as gs
model = gs.Gaussian(latlon=True, var=2, len_scale=500, rescale=gs.EARTH_RADIUS)
```
Then `len_scale` can be interpreted as given in km.

A *Yadrenko* model C is derived from a valid isotropic covariance model in 3D C_{3D} by the following relation:

$$ C(\zeta) = C_{3D}\left(2 \cdot \sin\left(\frac{\zeta}{2}\right)\right) $$

Where ζ is the great-circle distance.

Note: lat and lon are given in degree, whereas the great-circle distance ζ is given in radians.

Note that $2 \cdot \sin(\frac{\zeta}{2})$ is the chordal distance of two points on a sphere, which means we simply think of the earth surface as a sphere, that is cut out of the surrounding three dimensional space, when using the *Yadrenko* model.

Note: Anisotropy is not available with the geographical models, since their geometry is not euclidean. When passing values for `CovModel.anis` or `CovModel.angles`, they will be ignored.

Since the Yadrenko model comes from a 3D model, the model dimension will be 3 (see `CovModel.dim`) but the `field_dim` will be 2 in this case (see `CovModel.field_dim`).

Examples

Working with lat-lon random fields

In this example, we demonstrate how to generate a random field on geographical coordinates.

First we setup a model, with `latlon=True`, to get the associated Yadrenko model.

In addition, we will use the earth radius provided by `EARTH_RADIUS`, to have a meaningful length scale in km.

To generate the field, we simply pass `(lat, lon)` as the position tuple to the `SRF` class.

```python
import gstools as gs

model = gs.Gaussian(latlon=True, var=1, len_scale=777, rescale=gs.EARTH_RADIUS)
lat = lon = range(-80, 81)
srf = gs.SRF(model, seed=1234)
field = srf.structured((lat, lon))
srf.plot()
```
This was easy as always! Now we can use this field to estimate the empirical variogram in order to prove, that the generated field has the correct geo-statistical properties. The \texttt{vario_estimate} routine also provides a \texttt{latlon} switch to indicate, that the given field is defined on geographical variables.

As we will see, everything went well... phew!

```python
bin_edges = [0.01 * i for i in range(30)]
bin_center, emp_vario = gs.vario_estimate(
    (lat, lon),
    field,
    bin_edges,
    latlon=True,
    mesh_type="structured",
    sampling_size=2000,
    sampling_seed=12345,
)

ax = model.plot("vario\_yadrenko", x_max=0.3)
model.fit_variogram(bin_center, emp_vario, nugget=False)
model.plot("vario\_yadrenko", ax=ax, label="fitted", x_max=0.3)
ax.scatter(bin_center, emp_vario, color="k")
print(model)
```
Out:

```
Gaussian(latlon=True, var=1.02, len_scale=8.3e+02, nugget=0.0, rescale=6.37e+03)
```

Note: Note, that the estimated variogram coincides with the yadrenko variogram, which means it depends on the great-circle distance given in radians.

Keep that in mind when defining bins: The range is at most $\pi \approx 3.14$, which corresponds to the half globe.

Total running time of the script: (0 minutes 9.048 seconds)

Kriging geographical data

In this example we are going to interpolate actual temperature data from the German weather service DWD.

Data is retrieved utilizing the beautiful package `wetterdienst`, which serves as an API for the DWD data.

For better visualization, we also download a simple shapefile of the German borderline with `cartopy`.

In order to keep the number of dependencies low, the calls of both functions shown beneath are commented out.

```python
import matplotlib.pyplot as plt
import numpy as np
import gstools as gs

def get_borders_germany():
    """Download simple german shape file with cartopy."""
```

(continues on next page)
import geopandas as gp # 0.8.1
from cartopy.io import shapereader as shp_read # version 0.18.0

shpfile = shp_read.natural_earth("50m", "cultural", "admin_0_countries")
df = gp.read_file(shpfile) # only use the simplest polygon
poly = df.loc[df["ADMIN"] == "Germany"]["geometry"][0][0]
np.savetxt("de_borders.txt", list(poly.exterior.coords))

def get_dwd_temperature(date="2020-06-09 12:00:00"):
 """Get air temperature from german weather stations from 9.6.20 12:00."""
 from wetterdienst.dwd import observations as obs # version 0.13.0
 settings = dict(
 resolution=obs.DWDObservationResolution.HOURLY,
 start_date=date,
 end_date=date,
)
sites = obs.DWDObservationStations(
 parameter_set=obs.DWDObservationParameterSet.TEMPERATURE_AIR,
 period=obs.DWDObservationPeriod.RECENT,
 **settings,
)
ids, lat, lon = sites.all().loc[:, ["STATION_ID", "LAT", "LON"]].values.T
observations = obs.DWDObservationData(
 station_ids=ids,
 parameters=obs.DWDObservationParameter.HOURLY.TEMPERATURE_AIR_200,
 periods=obs.DWDObservationPeriod.RECENT,
 **settings,
)
temp = observations.all().VALUE.values
sel = np.isfinite(temp)
select only valid temperature data
ids, lat, lon, temp = ids.astype(float)[sel], lat[sel], lon[sel], temp[sel]
head = "id, lat, lon, temp" # add a header to the file
np.savetxt("temp_obs.txt", np.array([ids, lat, lon, temp]).T, header=head)

get_borders_germany()
get_dwd_temperature(date="2020-06-09 12:00:00")

border = np.loadtxt("de_borders.txt")
ids, lat, lon, temp = np.loadtxt("temp_obs.txt").T

First we will estimate the variogram of our temperature data. As the maximal bin distance we choose 8 degrees, which corresponds to a chordal length of about 900 km.

bins = gs.standard_bins((lat, lon), max_dist=np.deg2rad(8), latlon=True)
bin_c, vario = gs.vario_estimate((lat, lon), temp, bins, latlon=True)

Now we can use this estimated variogram to fit a model to it. Here we will use a Spherical model. We select the latlon option to use the Yadrenko variant of the model to gain a valid model for lat-lon coordinates and we rescale it to the earth-radius. Otherwise the length scale would be given in radians representing the great-circle distance.

We deselect the nugget from fitting and plot the result afterwards.

Note: You need to plot the Yadrenko variogram, since the standard variogram still holds the ordinary routine that
is not respecting the great-circle distance.

```python
model = gs.Spherical(latlon=True, rescale=gs.EARTH_RADIUS)
model.fit_variogram(bin_c, vario, nugget=False)
ax = model.plot("vario_yadrenko", x_max=bins[-1])
ax.scatter(bin_c, vario)
print(model)
```

Out:

```
Spherical(latlon=True, var=13.1, len_scale=5.93e+02, nugget=0.0, rescale=6.37e+03)
```

As we see, we have a rather large correlation length of 600 km.

Now we want to interpolate the data using Universal kriging. In order to tinker around with the data, we will use a north-south drift by assuming a linear correlation with the latitude. This can be done as follows:

```python
def north_south_drift(lat, lon):
    return lat

uk = gs.krige.Universal(
    model=model,
    cond_pos=(lat, lon),
    cond_val=temp,
    drift_functions=north_south_drift,
)
```

Now we generate the kriging field, by defining a lat-lon grid that covers the whole of Germany. The `Krige` class provides the option to only krig the mean field, so one can have a glimpse at the estimated drift.
g_lat = np.arange(47, 56.1, 0.1)
g_lon = np.arange(5, 16.1, 0.1)

uk.set_pos((g_lat, g_lon), mesh_type="structured")
uk(return_var=False, store="temp_field")
uk(only_mean=True, store="mean_field")

And that’s it. Now let’s have a look at the generated field and the input data along with the estimated mean:

levels = np.linspace(5, 23, 64)

fig, ax = plt.subplots(1, 3, figsize=[10, 5], sharey=True)
sca = ax[0].scatter(lon, lat, c=temp, vmin=5, vmax=23, cmap="coolwarm")
co1 = ax[1].contourf(g_lon, g_lat, uk["temp_field"], levels, cmap="coolwarm")
co2 = ax[2].contourf(g_lon, g_lat, uk["mean_field"], levels, cmap="coolwarm")

for i in range(3):
 ax[i].plot(border[:, 0], border[:, 1], color="k")
 ax[i].set_xlim([5, 16])
 ax[i].set_xlabel("Lon in deg")
ax[0].set_ylabel("Lat in deg")
ax[0].set_title("Temperature observations at 2m\nfrom DWD (2020-06-09 12:00)")
ax[1].set_title("Interpolated temperature\nwith North-South drift")
ax[2].set_title("Estimated mean drift\nfrom Universal Kriging")

fig.colorbar(co2, ax=ax, **fmt).set_label("T in [°C]")

To get a better impression of the estimated north-south drift, we’ll take a look at a cross-section at a longitude of 10 degree:

fig, ax = plt.subplots()
ax.plot(g_lat, uk["temp_field"][:, 50], label="Interpolated temperature")
ax.plot(g_lat, uk["mean_field"][:, 50], label="North-South mean drift")
ax.set_xlabel("Lat in deg")
ax.set_ylabel("T in [°C]")
ax.set_title("North-South cross-section at 10°")
ax.legend()
2.9 Spatio-Temporal Modeling

Spatio-Temporal modelling can provide insights into time dependent processes like rainfall, air temperature or crop yield.

GSTools provides the metric spatio-temporal model for all covariance models by enhancing the spatial model dimension with a time dimension to result in the spatio-temporal dimension `st_dim` and setting a spatio-temporal anisotropy ratio with `st_anis`:

```python
import gstools as gs
dim = 3  # spatial dimension
st_dim = dim + 1
st_anis = 0.4
st_model = gs.Exponential(dim=st_dim, anis=st_anis)
```

Since it is given in the name “spatio-temporal”, we will always treat the time as last dimension. This enables us to have spatial anisotropy and rotation defined as in non-temporal models, without altering the behavior in the time dimension:

```python
anis = [0.4, 0.2]  # spatial anisotropy in 3D
angles = [0.5, 0.4, 0.3]  # spatial rotation in 3D
st_model = gs.Exponential(dim=st_dim, anis=anis+[st_anis], angles=angles)
```

In order to generate spatio-temporal position tuples, GSTools provides a convenient function `generate_st_grid`. The output can be used for spatio-temporal random field generation (or kriging resp. conditioned fields):
pos = dim * [1, 2, 3] # 3 points in space (1,1,1), (2,2,2) and (3,3,3)
time = range(10) # 10 time steps
st_grid = gs.generate_st_grid(pos, time)
st_rf = gs.SRF(st_model)
st_field = st_rf(st_grid).reshape(-1, len(time))

Then we can access the different time-steps by the last array index.

Examples

Creating a 1D Synthetic Precipitation Field

In this example we will create a time series of a 1D synthetic precipitation field.

We’ll start off by creating a Gaussian random field with an exponential variogram, which seems to reproduce the spatial correlations of precipitation fields quite well. We’ll create a daily timeseries over a one dimensional cross section of 50km. This workflow is suited for sub daily precipitation time series.

```python
import copy
import matplotlib.pyplot as plt
import numpy as np
import gstools as gs

# fix the seed for reproducibility
seed = 20170521
# spatial axis of 50km with a resolution of 1km
x = np.arange(0, 50, 1.0)
# half daily timesteps over three months
t = np.arange(0.0, 90.0, 0.5)

# total spatio-temporal dimension
st_dim = 1 + 1
# space-time anisotropy ratio given in units d / km
st_anis = 0.4

# an exponential variogram with a corr. lengths of 2d and 5km
model = gs.Exponential(dim=st_dim, var=1.0, len_scale=5.0, anis=st_anis)
# create a spatial random field instance
srf = gs.SRF(model, seed=seed)
pos, time = [x], [t]
# a Gaussian random field which is also saved internally for the transformations
srf.structured(pos + time)
P_gau = copy.deepcopy(srf.field)

Next, we could take care of the dry periods. Therefore we would simply introduce a lower threshold value. But we will combine this step with the next one. Anyway, for demonstration purposes, we will also do it with the threshold value now.

```python
threshold = 0.85
P_cut = copy.deepcopy(srf.field)
P_cut[P_cut <= threshold] = 0.0
```

With the above lines of code we have created a cut off Gaussian spatial random field with an exponential variogram. But precipitation fields are not distributed Gaussian. Thus, we will now transform the field with an inverse box-cox transformation (create a non-Gaussian field), which is often used to account for the skewness of precipitation fields. Different values have been suggested for the transformation parameter lambda, but we will stick to 1/2. As already mentioned, we will perform the cutoff for the dry periods with this transformation implicitly with the

2.9. Spatio-Temporal Modeling
shift. The warning will tell you that values have indeed been cut off and it can be ignored. We call the resulting field Gaussian anamorphosis.

```python
the lower this value, the more will be cut off, a value of 0.2 cuts off
nearly everything in this example.
cutoff = 0.55
gs.transform.boxcox(srf, lmbda=0.5, shift=-1.0 / cutoff)
```

Out:

```python
/home/docs/checkouts/readthedocs.org/user_builds/gstools/envs/stable/lib/python3.7/
˓→site-packages/gstools/transform/array.py:137: UserWarning: Box-Cox: Some values will be cut off!
 warn("Box-Cox: Some values will be cut off!")
```

As a last step, the amount of precipitation is set. This should of course be calibrated towards observations (the same goes for the threshold, the variance, correlation length, and so on).

```python
amount = 2.0
srf.field *= amount
P_ana = srf.field
```

Finally we can have a look at the fields resulting from each step. Note, that the cutoff of the cut Gaussian only approximates the cutoff values from the box-cox transformation. For a closer look, we will examine a cross section at an arbitrary location. And afterwards we will create a contour plot for visual candy.

```python
fig, axs = plt.subplots(2, 2, sharex=True, sharey=True)
axs[0, 0].set_title("Gaussian")
axs[0, 0].plot(t, P_gau[20, :])
axs[0, 0].set_ylabel(r"P / mm")

axs[0, 1].set_title("Cut Gaussian")
axs[0, 1].plot(t, P_cut[20, :])

axs[1, 0].set_title("Cut Gaussian Anamorphosis")
axs[1, 0].plot(t, P_ana[20, :])
axs[1, 0].set_xlabel(r"t / d")
axs[1, 0].set_ylabel(r"P / mm")

axs[1, 1].set_title("Different Cross Section")
axs[1, 1].plot(t, P_ana[10, :])
axs[1, 1].set_xlabel(r"t / d")

plt.tight_layout()
```

```python
fig, axs = plt.subplots(2, 2, sharex=True, sharey=True)
cont = axs[0, 0].contourf(t, x, P_gau, cmap="PuBu", levels=10)
cbar = fig.colorbar(cont, ax=axs[0, 0])
cbar.ax.set_ylabel(r"P / mm")
axs[0, 0].set_ylabel(r"x / km")

cont = axs[0, 1].contourf(t, x, P_cut, cmap="PuBu", levels=10)
cbar = fig.colorbar(cont, ax=axs[0, 1])
cbar.ax.set_ylabel(r"P / mm")
axs[0, 1].set_xlabel(r"t / d")

cont = axs[1, 0].contourf(t, x, P_ana, cmap="PuBu", levels=10)
```

(continues on next page)
```python
fig.colorbar(cont, ax=axs[1, 0])
cbar.ax.set_ylabel(r"P / mm")
axs[1, 0].set_xlabel(r"t / d")
axs[1, 0].set_ylabel(r"x / km")
fig.delaxes(axs[1, 1])
plt.tight_layout()

2.9. Spatio-Temporal Modeling
Creating a 2D Synthetic Precipitation Field

In this example we’ll create a time series of a 2D synthetic precipitation field.

Very similar to the previous tutorial, we’ll start off by creating a Gaussian random field with an exponential variogram, which seems to reproduce the spatial correlations of precipitation fields quite well. We’ll create a daily timeseries over a two dimensional domain of 50km x 40km. This workflow is suited for sub daily precipitation time series.

```python
import matplotlib.animation as animation
import matplotlib.pyplot as plt
import numpy as np
import gstools as gs

# fix the seed for reproducibility
seed = 20170521

# 1st spatial axis of 50km with a resolution of 1km
x = np.arange(0, 50, 1.0)

# 2nd spatial axis of 40km with a resolution of 1km
y = np.arange(0, 40, 1.0)

# half daily timesteps over three months
st_dim = 2 + 1

# total spatio-temporal dimension
st_anis = 0.4

# an exponential variogram with a corr. lengths of 5km, 5km, and 2d
```
model = gs.Exponential(dim=st_dim, var=1.0, len_scale=5.0, anis=st_anis)
create a spatial random field instance
srf = gs.SRF(model, seed=seed)
pos, time = [x, y], [t]
the Gaussian random field
srf.structured(pos + time)

account for the skewness and the dry periods
cutoff = 0.55
gs.transform.boxcox(srf, lmbda=0.5, shift=-1.0 / cutoff)

adjust the amount of precipitation
amount = 4.0
srf.field *= amount

plot the 2d precipitation field over time as an animation.

```python
def _update_ani(time_step):
    im.set_array(srf.field[:, :, time_step].T)
    return (im,)

fig, ax = plt.subplots()
im = ax.imshow(srf.field[:, :, 0].T, cmap="Blues",
               interpolation="bicubic",
               origin="lower",)
cbar = fig.colorbar(im)
cbar.ax.set_ylabel(r"Precipitation $P$ / mm")
ax.set_xlabel(r"$x$ / km")
ax.set_ylabel(r"$y$ / km")
ani = animation.FuncAnimation(
    fig, _update_ani, len(t), interval=100, blit=True
)
```

Total running time of the script: (1 minutes 41.610 seconds)

2.10 Normalizing Data

When dealing with real-world data, one can’t assume it to be normal distributed. In fact, many properties are modeled by applying different transformations, for example conductivity is often assumed to be log-normal or precipitation is transformed using the famous box-cox power transformation.

These “normalizers” are often represented as parametric power transforms and one is interested in finding the best parameter to gain normality in the input data.

This is of special interest when kriging should be applied, since the target variable of the kriging interpolation is assumed to be normal distributed.
GSTools provides a set of Normalizers and routines to automatically fit these to input data by minimizing the likelihood function.

Mean, Trend and Normalizers

All Field classes ([SRF](https://example.com), [Krige](https://example.com) or [CondSRF](https://example.com)) provide the input of `mean`, `normalizer` and `trend`:

- A `trend` can be a callable function, that represents a trend in input data. For example a linear decrease of temperature with height.
- The `normalizer` will be applied after the data was detrended, i.e. the trend was subtracted from the data, in order to gain normality.
- The `mean` is now interpreted as the mean of the normalized data. The user could also provide a callable mean, but it is mostly meant to be constant.

When no normalizer is given, `trend` and `mean` basically behave the same. We just decided that a trend is associated with raw data and a mean is used in the context of normally distributed data.

Provided Normalizers

The following normalizers can be passed to all Field-classes and variogram estimation routines or can be used as standalone tools to analyse data.

<table>
<thead>
<tr>
<th>Normalizer</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>LogNormal([data])</code></td>
<td>Log-normal fields.</td>
</tr>
<tr>
<td><code>BoxCox([data])</code></td>
<td>Box-Cox (1964) transformed fields.</td>
</tr>
<tr>
<td><code>BoxCoxShift([data])</code></td>
<td>Box-Cox (1964) transformed fields including shifting.</td>
</tr>
<tr>
<td><code>YeoJohnson([data])</code></td>
<td>Yeo-Johnson (2000) transformed fields.</td>
</tr>
<tr>
<td><code>Modulus([data])</code></td>
<td>Modulus or John-Draper (1980) transformed fields.</td>
</tr>
<tr>
<td><code>Manly([data])</code></td>
<td>Manly (1971) transformed fields.</td>
</tr>
</tbody>
</table>

Examples

Log-Normal Kriging

Log Normal kriging is a term to describe a special workflow for kriging to deal with log-normal data, like conductivity or transmissivity in hydrogeology.

It simply means to first convert the input data to a normal distribution, i.e. applying a logarithmic function, then interpolating these values with kriging and transforming the result back with the exponential function.

The resulting kriging variance describes the error variance of the log-values of the target variable.

In this example we will use ordinary kriging.

```python
import numpy as np
import gstools as gs

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
# stable covariance model
model = gs.Stable(dim=1, var=0.5, len_scale=2.56, alpha=1.9)

In order to result in log-normal kriging, we will use the `LogNormal` Normalizer. This is a parameter-less normalizer, so we don’t have to fit it.
Now we generate the interpolated field as well as the mean field. This can be done by setting `only_mean=True` in `Krige.__call__`. The result is then stored as `mean_field`.

In terms of log-normal kriging, this mean represents the geometric mean of the field.

```python
normalizer = gs.normalizer.LogNormal

krige = gs.krige.Ordinary(model, cond_pos, cond_val, normalizer=normalizer)
interpolate the field
krige(gridx)
also generate the mean field
krige(gridx, only_mean=True)
```

And that’s it. Let’s have a look at the results.

```python
ax = krige.plot()
plotting the geometric mean
krige.plot("mean_field", ax=ax)
plotting the conditioning data
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.legend()
```

**Field 1D: (151.)**

![Field 1D plot](image)

**Total running time of the script:** (0 minutes 0.146 seconds)
**Automatic fitting**

In order to demonstrate how to automatically fit normalizer and variograms, we generate synthetic log-normal data, that should be interpolated with ordinary kriging.

Normalizers are fitted by minimizing the likelihood function and variograms are fitted by estimating the empirical variogram with automatic binning and fitting the theoretical model to it. Thereby the sill is constrained to match the field variance.

**Artificial data**

Here we generate log-normal data following a Gaussian covariance model. We will generate the “original” field on a 60x60 mesh, from which we will take samples in order to pretend a situation of data-scarcity.

```python
import matplotlib.pyplot as plt
import numpy as np
import gstools as gs

structured field with edge length of 50
x = y = range(51)
pos = gs.generate_grid([x, y])
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, seed=20170519, normalizer=gs.normalizer.LogNormal())

generate the original field
srf(pos)
```

Here, we sample 60 points and set the conditioning points and values.

```python
ids = np.arange(srf.field.size)
samples = np.random.RandomState(20210201).choice(ids, size=60, replace=False)

sample conditioning points from generated field
cond_pos = pos[:, samples]
cond_val = srf.field[samples]
```

**Fitting and Interpolation**

Now we want to interpolate the “measured” samples and we want to normalize the given data with the BoxCox transformation.

Here we set up the kriging routine and use a `Stable` model, that should be fitted automatically to the given data and we pass the `BoxCox` normalizer in order to gain normality.

The normalizer will be fitted automatically to the data, by setting `fit_normalizer=True`.

The covariance/variogram model will be fitted by an automatic workflow by setting `fit_variogram=True`.

```python
krige = gs.krige.Ordinary(model=gs.Stable(dim=2),
cond_pos=cond_pos,
cond_val=cond_val,
normalizer=gs.normalizer.BoxCox(),
fit_normalizer=True,
fit_variogram=True,
)
```

First, let’s have a look at the fitting results:
print(krige.model)
print(krige.normalizer)

Out:

Stable(dim=2, var=0.576, len_scale=8.85, nugget=0.00682, alpha=2.0)
BoxCox(lmbda=-0.0754)

As we see, it went quite well. Variance is a bit underestimated, but length scale and nugget are good. The shape parameter of the stable model is correctly estimated to be close to 2, so we result in a Gaussian like model.

The BoxCox parameter \( \lambda \) was estimated to be almost 0, which means, the log-normal distribution was correctly fitted.

Now let’s run the kriging interpolation.

krige(pos)

**Plotting**

Finally let’s compare the original, sampled and interpolated fields. As we’ll see, there is a lot of information in the covariance structure of the measurement samples and the field is reconstructed quite accurately.

```python
fig, ax = plt.subplots(1, 3, figsize=[8, 3])
ax[0].imshow(srf.field.reshape(len(x), len(y)).T, origin="lower")
ax[1].scatter(*cond_pos, c=cond_val)
ax[2].imshow(krige.field.reshape(len(x), len(y)).T, origin="lower")
titles
ax[0].set_title("original field")
ax[1].set_title("sampled field")
ax[2].set_title("interpolated field")
set aspect ratio to equal in all plots
[ax[i].set_aspect("equal") for i in range(3)]
```

![original field](image1.png)
![sampled field](image2.png)
![interpolated field](image3.png)

**Total running time of the script:** (0 minutes 0.387 seconds)
Normalizer Comparison

Let’s compare the transformation behavior of the provided normalizers.

But first, we define a convenience routine and make some imports as always.

```python
import matplotlib.pyplot as plt
import numpy as np
import gstools as gs

def dashes(i=1, max_n=12, width=1):
 '''Return line dashes.'''
 return i * [width, width] + [max_n * 2 * width - 2 * i * width, width]
```

We select 4 normalizers depending on a single parameter lambda and plot their transformation behavior within the interval \([-5, 5]\).

For the shape parameter lambda, we create a list of 8 values ranging from -1 to 2.5.

```python
lmbdas = [i * 0.5 for i in range(-2, 6)]
normalizers = [
 gs.normalizer.BoxCox,
 gs.normalizer.YeoJohnson,
 gs.normalizer.Modulus,
 gs.normalizer.Manly,
]
```

Let’s plot them!

```python
fig, ax = plt.subplots(2, 2, figsize=[8, 8])
for i, norm in enumerate(normalizers):
 # correctly setting the data range
 x_rng = norm().normalize_range
 x = np.linspace(max(-5, x_rng[0] + 0.01), min(5, x_rng[1] - 0.01))
 for j, lmbda in enumerate(lmbdas):
 ax.flat[i].plot(x,
 norm(lmbda=lmbda).normalize(x),
 label=r'$\lambda=' + str(lmbda) + '$',
 color='k',
 alpha=0.2 + j * 0.1,
 dashes=dashes(j),)

 # axis formatting
 ax.flat[i].grid(which='both', color='grey', linestyle='-', alpha=0.2)
 ax.flat[i].set_xlim([-5, 5])
 ax.flat[i].set_ylim([-5, 5])
 ax.flat[i].set_title(norm().name)

figure formatting
handles, labels = ax.flat[-1].get_legend_handles_labels()
fig.legend(handles, labels, loc='lower center', ncol=4, handlelength=3.0)
fig.suptitle("Normalizer Comparison", fontsize=20)
fig.show()
```
The missing LogNormal transformation is covered by the BoxCox transformation for lambda=0. The BoxCoxShift transformation is simply the BoxCox transformation shifted on the X-axis.

Total running time of the script: ( 0 minutes 0.340 seconds)

2.11 Miscellaneous Tutorials

More examples which do not really fit into other categories. Some are not more than a code snippet, while others are more complex and more than one part of GSTools is involved.
Examples

Truncated Power Law Variograms

GSTools also implements truncated power law variograms, which can be represented as a superposition of scale dependant modes in form of standard variograms, which are truncated by a lower- \( \ell_{\text{low}} \) and an upper length-scale \( \ell_{\text{up}} \).

This example shows the truncated power law (TPLStable) based on the Stable covariance model and is given by

\[
\gamma_{\ell_{\text{low}}, \ell_{\text{up}}}(r) = \int_{\ell_{\text{low}}}^{\ell_{\text{up}}} \frac{\gamma(r, \lambda) \, d\lambda}{\lambda}
\]

with Stable modes on each scale:

\[
\gamma(r, \lambda) = \sigma^2(\lambda) \cdot \left(1 - \exp \left[-\left(\frac{r}{\lambda}\right)^\alpha \right]\right)
\]

\[
\sigma^2(\lambda) = C \cdot \lambda^{2H}
\]

which gives Gaussian modes for \( \alpha = 2 \) or Exponential modes for \( \alpha = 1 \).

For \( \ell_{\text{low}} = 0 \) this results in:

\[
\gamma_{\ell_{\text{up}}}(r) = \sigma^2_{\ell_{\text{up}}} \cdot \left(1 - \frac{2H}{\alpha} E_{1+ \frac{2H}{\alpha}} \left[\left(\frac{r}{\ell_{\text{up}}}\right)^\alpha\right]\right)
\]

\[
\sigma^2_{\ell_{\text{up}}} = C \cdot \frac{\ell_{\text{up}}^{2H}}{2H}
\]
```python
import numpy as np
import gstools as gs

x = y = np.linspace(0, 100, 100)
model = gs.TPLStable(
 dim=2, # spatial dimension
 var=1, # variance (C is calculated internally, so variance is actually 1)
 len_low=0, # lower truncation of the power law
 len_scale=10, # length scale (a.k.a. range), len_up = len_low + len_scale
 nugget=0.1, # nugget
 anis=0.5, # anisotropy between main direction and transversal ones
 angles=np.pi / 4, # rotation angles
 alpha=1.5, # shape parameter from the stable model
 hurst=0.7, # hurst coefficient from the power law
)
srf = gs.SRF(model, mean=1.0, seed=19970221)
srf.structured([x, y])
srf.plot()
```

**Total running time of the script:** (0 minutes 13.425 seconds)

### Exporting Fields

GSTools provides simple exporting routines to convert generated fields to VTK files. These can be viewed for example with Paraview.

```python
import gstools as gs
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
field = srf((x, y), mesh_type="structured")
srf.vtk_export(filename="field")
```

The result displayed with Paraview:

**Total running time of the script:** (0 minutes 0.443 seconds)
import numpy as np
from matplotlib import pyplot as plt
from mpl_toolkits.mplot3d import Axes3D

import gstools as gs

def norm_rad(vec):
    """Direction on the unit sphere."""
    vec = np.array(vec, ndmin=2)
    norm = np.zeros(vec.shape[1])
    for i in range(vec.shape[0]):
        norm += vec[i] ** 2
    norm = np.sqrt(norm)
    return np.einsum("j,ij->ij", 1 / norm, vec), norm

def plot_rand_meth_samples(generator):
    """Plot the samples of the rand meth class."""
    norm, rad = norm_rad(generator._cov_sample)
    fig = plt.figure(figsize=(10, 4))

    if generator.model.dim == 3:
        ax = fig.add_subplot(121, projection=Axes3D.name)
        u = np.linspace(0, 2 * np.pi, 100)
        v = np.linspace(0, np.pi, 100)
        x = np.outer(np.cos(u), np.sin(v))
        y = np.outer(np.sin(u), np.sin(v))
        z = np.outer(np.ones(np.size(u)), np.cos(v))
        ax.plot_surface(x, y, z, rstride=4, cstride=4, color="b", alpha=0.1)
        ax.scatter(norm[0], norm[1], norm[2])
    elif generator.model.dim == 2:
        ax = fig.add_subplot(121)
        u = np.linspace(0, 2 * np.pi, 100)
        x = np.cos(u)
        y = np.sin(u)
        ax.plot(x, y, color="b", alpha=0.1)
        ax.scatter(norm[0], norm[1])
        ax.set_aspect("equal")
    else:
        ax = fig.add_subplot(121)
        ax.bar(-1, np.sum(np.isclose(norm, -1)), color="C0")
(continues on next page)
Analyzing the Herten Aquifer with GSTools

This example is going to be a bit more extensive and we are going to do some basic data preprocessing for the actual variogram estimation. But this example will be self-contained and all data gathering and processing will be done in this example script.

The Data

We are going to analyse the Herten aquifer, which is situated in Southern Germany. Multiple outcrop faces where surveyed and interpolated to a 3D dataset. In these publications, you can find more information about the data:

Bayer, Peter; Comunian, Alessandro; Höyng, Dominik; Mariethoz, Gregoire (2015): Physicochemical properties and 3D geostatistical simulations of the Herten and the Descalvado aquifer analogs. PANGAEA, https://doi.org/10.1594/PANGAEA.844167,

Retrieving the Data

To begin with, we need to download and extract the data. Therefore, we are going to use some built-in Python libraries. For simplicity, many values and strings will be hardcoded.

You don’t have to execute the download_herten and generate_transmissivity functions, since the only produce the herten_transmissivity.gz and grid_dim_origin_spacing.txt, which are already present.
import gstatools as gs
VTK_PATH = os.path.join("Herten-analog", "sim-big_1000x1000x140", "sim.vtk")

def download_herten():
    """Download the data, warning: its about 250MB."""
    import urllib.request
    import zipfile
    print("Downloading Herten data")
data_filename = "data.zip"
data_url = {
    "http://store.pangaea.de/Publications/
    "Bayer_et_al_2015/Herten-analog.zip"
}
urllib.request.urlretrieve(data_url, "data.zip")
# extract the "big" simulation
with zipfile.ZipFile(data_filename, "r") as zf:
    zf.extract(VTK_PATH)

def generate_transmissivity():
    """Generate a file with a transmissivity field from the HERTEN data."""
    import shutil
    import pyvista as pv
    print("Loading Herten data with pyvista")
mesh = pv.read(VTK_PATH)
herten = mesh.point_arrays["facies"].reshape(mesh.dimensions, order="F")
# conductivity values per fazies from the supplementary data
cond = 1e-4 * np.array([2.5, 2.3, 0.61, 260, 1300, 950, 0.43, 0.006, 23, 1.4])
# asign the conductivities to the facies
herten_cond = cond[herten]
# Next, we are going to calculate the transmissivity, 
# by integrating over the vertical axis
herten_trans = np.sum(herten_cond, axis=2) * mesh.spacing[2]
# saving some grid informations
grid = [mesh.dimensions[:2], mesh.origin[:2], mesh.spacing[:2]]
print("Saving the transmissivity field and grid information")
np.savetxt("herten_transmissivity.gz", herten_trans)
np.savetxt("grid_dim_origin_spacing.txt", grid)
# Some cleanup. You can comment out these lines to keep the downloaded data
os.remove("data.zip")
shutil.rmtree("Herten-analog")
### Downloading and Preprocessing

You can uncomment the following two calls, so the data is downloaded and processed again.

```python
download_herten()
generate_transmissivity()
```

### Analyzing the data

The Herten data provides information about the grid, which was already used in the previous code block. From this information, we can create our own grid on which we can estimate the variogram. As a first step, we are going to estimate an isotropic variogram, meaning that we will take point pairs from all directions into account. An unstructured grid is a natural choice for this. Therefore, we are going to create an unstructured grid from the given, structured one. For this, we are going to write another small function

```python
herten_log_trans = np.log(np.loadtxt("herten_transmissivity.gz"))
dim, origin, spacing = np.loadtxt("grid_dim_origin_spacing.txt")

create a structured grid on which the data is defined
x_s = np.arange(origin[0], origin[0] + dim[0] * spacing[0], spacing[0])
for y_s = np.arange(origin[1], origin[1] + dim[1] * spacing[1], spacing[1])
for x_u, y_u = np.meshgrid(x_s, y_s)

create the corresponding unstructured grid for the variogram estimation
plt.imshow(herten_log_trans.T, origin="lower", aspect="equal")
plt.show()
```
Estimating the Variogram

Finally, everything is ready for the variogram estimation. For the unstructured method, we have to define the bins on which the variogram will be estimated. Through expert knowledge (i.e. fiddling around), we assume that the main features of the variogram will be below 10 metres distance. And because the data has a high spatial resolution, the resolution of the bins can also be high. The transmissivity data is still defined on a structured grid, but we can simply flatten it with `numpy.ndarray.flatten`, in order to bring it into the right shape. It might be more memory efficient to use `herten_log_trans.reshape(-1)`, but for better readability, we will stick to `numpy.ndarray.flatten`. Taking all data points into account would take a very long time (expert knowledge *wink*), thus we will only take 2000 datapoints into account, which are sampled randomly. In order to make the exact results reproducible, we can also set a seed.

```python
bins = gs.standard_bins(pos=(x_u, y_u), max_dist=10)
bin_center, gamma = gs.vario_estimate(
 (x_u, y_u),
 herten_log_trans.reshape(-1),
 bins,
 sampling_size=2000,
 sampling_seed=19920516,
)
```

The estimated variogram is calculated on the centre of the given bins, therefore, the `bin_center` array is also returned.

Fitting the Variogram

Now, we can see, if the estimated variogram can be modelled by a common variogram model. Let’s try the Exponential model.

```python
fit an exponential model
fit_model = gs.Exponential(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
```

Finally, we can visualise some results. For quickly plotting a covariance model, GSTools provides some helper functions.

```python
ax = fit_model.plot(x_max=max(bin_center))
ax.plot(bin_center, gamma)
```
That looks like a pretty good fit! By printing the model, we can directly see the fitted parameters

```python
print(fit_model)
```

Out:

```
Exponential(dim=2, var=0.0202, len_scale=1.45, nugget=0.0)
```

With this data, we could start generating new ensembles of the Herten aquifer with the `SRF` class.

### Estimating the Variogram in Specific Directions

Estimating a variogram on a structured grid gives us the possibility to only consider values in a specific direction. This could be a first test, to see if the data is anisotropic. In order to speed up the calculations, we are going to only use every 10th datapoint and for a comparison with the isotropic variogram calculated earlier, we only need the first 21 array items.

```python
estimate the variogram on a structured grid
use only every 10th value, otherwise calculations would take very long
x_s_skip = np.ravel(x_s)[::10]
y_s_skip = np.ravel(y_s)[::10]
herten_trans_skip = herten_log_trans[::10, ::10]
```

With this much smaller data set, we can immediately estimate the variogram in the x- and y-axis

```python
gamma_x = gs.vario_estimate_axis(herten_trans_skip, direction="x")
gamma_y = gs.vario_estimate_axis(herten_trans_skip, direction="y")
```

With these two estimated variograms, we can start fitting `Exponential` covariance models
x_plot = x_s_skip[:21]
y_plot = y_s_skip[:21]
# fit an exponential model
fit_model_x = gs.Exponential(dim=2)
fit_model_x.fit_variogram(x_plot, gamma_x[:21], nugget=False)
fit_model_y = gs.Exponential(dim=2)
fit_model_y.fit_variogram(y_plot, gamma_y[:21], nugget=False)

Now, the isotropic variogram and the two variograms in x- and y-direction can be plotted together with their respective models, which will be plotted with dashed lines.

```
plt.figure() # new figure
(line,) = plt.plot(bin_center, gamma, label="estimated variogram (isotropic)")
plt.plot(
 bin_center,
 fit_model.variogram(bin_center),
 color=line.get_color(),
 linestyle="--",
 label="exp. variogram (isotropic)",
)

(line,) = plt.plot(x_plot, gamma_x[:21], label="estimated variogram in x-dir")
plt.plot(
 x_plot,
 fit_model_x.variogram(x_plot),
 color=line.get_color(),
 linestyle="--",
 label="exp. variogram in x-dir",
)

(line,) = plt.plot(y_plot, gamma_y[:21], label="estimated variogram in y-dir")
plt.plot(
 y_plot,
 fit_model_y.variogram(y_plot),
 color=line.get_color(),
 linestyle="--",
 label="exp. variogram in y-dir",
)
plt.legend()
plt.show()
```
The plot might be a bit cluttered, but at least it is pretty obvious that the Herten aquifer has no apparent anisotropies in its spatial structure.

```
print("semivariogram model (isotropic): \n", fit_model)
print("semivariogram model (in x-dir.): \n", fit_model_x)
print("semivariogram model (in y-dir.): \n", fit_model_y)
```

Out:

```
semivariogram model (isotropic):
 Exponential(dim=2, var=0.0202, len_scale=1.45, nugget=0.0)
semivariogram model (in x-dir.):
 Exponential(dim=2, var=0.0199, len_scale=1.55, nugget=0.0)
semivariogram model (in y-dir.):
 Exponential(dim=2, var=0.0193, len_scale=1.31, nugget=0.0)
```

### Creating a Spatial Random Field from the Herten Parameters

With all the hard work done, it’s straight forward now, to generate new Herten-like realisations.

```
create a spatial random field on the low-resolution grid
srf = gs.SRF(fit_model, seed=19770928)
srf.structured([x_s_skip, y_s_skip])
ax = srf.plot()
ax.set_aspect("equal")
```
That's pretty neat!

**Total running time of the script:** ( 0 minutes 3.587 seconds)

## Standalone Field class

The *Field* class of GSTools can be used to plot arbitrary data in nD.

In the following example we will produce 10000 random points in 4D with random values and plot them.

```python
import numpy as np
import gstools as gs

rng = np.random.RandomState(19970221)
x0 = rng.rand(10000) * 100.0
x1 = rng.rand(10000) * 100.0
x2 = rng.rand(10000) * 100.0
x3 = rng.rand(10000) * 100.0
values = rng.rand(10000) * 100.0

plotter = gs.field.Field(dim=4)
plotter(pos=(x0, x1, x2, x3), field=values)
plotter.plot()
```

Only thing needed to instantiate the Field is the dimension.

Afterwards we can call the instance like all other Fields (*SRF*, *Krige* or *CondSRF*), but with an additional field.
Total running time of the script: (0 minutes 0.610 seconds)


CHAPTER 3

GSTOOLS API

3.1 Purpose

GeoStatTools is a library providing geostatistical tools for random field generation, conditioned field generation, kriging and variogram estimation based on a list of provided or even user-defined covariance models.

The following functionalities are directly provided on module-level.

3.2 Subpackages

<table>
<thead>
<tr>
<th>Subpackage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>covmodel</td>
<td>GStools subpackage providing a set of handy covariance models.</td>
</tr>
<tr>
<td>field</td>
<td>GStools subpackage providing tools for spatial random fields.</td>
</tr>
<tr>
<td>variogram</td>
<td>GStools subpackage providing tools for estimating and fitting variograms.</td>
</tr>
<tr>
<td>krige</td>
<td>GStools subpackage providing kriging.</td>
</tr>
<tr>
<td>random</td>
<td>GStools subpackage for random number generation.</td>
</tr>
<tr>
<td>tools</td>
<td>GStools subpackage providing miscellaneous tools.</td>
</tr>
<tr>
<td>transform</td>
<td>GStools subpackage providing transformations to post-process normal fields.</td>
</tr>
<tr>
<td>normalizer</td>
<td>GStools subpackage providing normalization routines.</td>
</tr>
</tbody>
</table>

3.3 Classes

Kriging

Swiss-Army-Knife for Kriging. For short cut classes see: gstools.krige

\[
\text{Krige} \text{(model, cond_pos, cond_val, \ldots)}
\]

A Swiss Army knife for kriging.
Spatial Random Field

Classes for (conditioned) random field generation

**SRF**(model[, mean, normalizer, trend, ...]) A class to generate spatial random fields (SRF).

**CondSRF**(krige[, generator]) A class to generate conditioned spatial random fields (SRF).

Covariance Base-Class

Class to construct user defined covariance models

**CovModel**(dim, var, len_scale, nugget, ...) Base class for the GSTools covariance models.

Covariance Models

Standard Covariance Models

**Gaussian**(dim, var, len_scale, nugget, ...) The Gaussian covariance model.

**Exponential**(dim, var, len_scale, nugget, ...) The Exponential covariance model.

**Matern**(dim, var, len_scale, nugget, anis, ...) The Matérn covariance model.

**Stable**(dim, var, len_scale, nugget, anis, ...) The stable covariance model.

**Rational**(dim, var, len_scale, nugget, ...) The rational quadratic covariance model.

**Cubic**(dim, var, len_scale, nugget, anis, ...) The Cubic covariance model.

**Linear**(dim, var, len_scale, nugget, anis, ...) The bounded linear covariance model.

**Circular**(dim, var, len_scale, nugget, ...) The circular covariance model.

**Spherical**(dim, var, len_scale, nugget, ...) The Spherical covariance model.

**HyperSpherical**(dim, var, len_scale, ...) The Hyper-Spherical covariance model.

**SuperSpherical**(dim, var, len_scale, ...) The Super-Spherical covariance model.

**JBessel**(dim, var, len_scale, nugget, anis, ...) The J-Bessel hole model.

Truncated Power Law Covariance Models

**TPLGaussian**(dim, var, len_scale, nugget, ...) Truncated-Power-Law with Gaussian modes.

**TPLExponential**(dim, var, len_scale, ...) Truncated-Power-Law with Exponential modes.

**TPLStable**(dim, var, len_scale, nugget, ...) Truncated-Power-Law with Stable modes.

**TPLSimple**(dim, var, len_scale, nugget, ...) The simply truncated power law model.

3.4 Functions

VTK-Export

Routines to export fields to the vtk format

**vtk_export**(filename, pos, fields[, mesh_type]) Export a field to vtk.

**to_vtk**(pos, fields[, mesh_type]) Create a VTK/PyVista grid.
**Geometric**

Some convenient functions for geometric operations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>rotated_main_axes(dim, angles)</code></td>
<td>Create list of the main axis defined by the given system rotations.</td>
</tr>
<tr>
<td><code>generate_grid(pos)</code></td>
<td>Generate grid from a structured position tuple.</td>
</tr>
<tr>
<td><code>generate_st_grid(pos, time[, mesh_type])</code></td>
<td>Generate spatio-temporal grid from a position tuple and time array.</td>
</tr>
</tbody>
</table>

**Variogram Estimation**

Estimate the variogram of a given field with these routines

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vario_estimate(pos, field[, bin_edges, ...])</code></td>
<td>Estimates the empirical variogram.</td>
</tr>
<tr>
<td><code>vario_estimate_axis(field[, direction, ...])</code></td>
<td>Estimates the variogram along array axis.</td>
</tr>
<tr>
<td><code>standard_bins(pos, dim, latlon, mesh_type, ...)</code></td>
<td>Get standard binning.</td>
</tr>
</tbody>
</table>

**3.5 Misc**

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>EARTH_RADIUS</code></td>
<td>earth radius for WGS84 ellipsoid in km</td>
</tr>
</tbody>
</table>
3.6 gstools.covmodel

GStools subpackage providing a set of handy covariance models.

Subpackages

<table>
<thead>
<tr>
<th>plot</th>
<th>GStools subpackage providing plotting routines for the covariance models.</th>
</tr>
</thead>
</table>

Covariance Base-Class

Class to construct user defined covariance models

```python
CovModel([dim, var, len_scale, nugget, ...])
```

gstools.covmodel.CovModel

```python
class gstools.covmodel.CovModel(dim=3, var=1.0, len_scale=1.0, nugget=0.0, anis=1.0, angles=0.0, integral_scale=None, rescale=None, lat-lon=False, var_raw=None, hankel_kw=None, **opt_arg)
```

Bases: `object`

Base class for the GSTools covariance models.

Parameters

- **dim** (int, optional) – dimension of the model. Default: 3
- **var** (float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- **len_scale** (float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, **anis** will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- **nugget** (float, optional) – nugget of the model. Default: 0.0
- **anis** (float or list, optional) – anisotropy ratios in the transversal directions [e_y, e_z].
  - e_y = l_y / l_x
  - e_z = l_z / l_x
  If only one value is given in 3D, e_y will be set to 1. This value will be ignored, if multiple len_scales are given. Default: 1.0
- **angles** (float or list, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)
  Default: 0.0
- **integral_scale** (float or list or None, optional) – If given, len_scale will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None
• **rescale** *(float or None, optional)* – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None

• **latlon** *(bool, optional)* – Whether the model is describing 2D fields on earth’s surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance $r$ will be replaced by $2 \sin(\alpha/2)$, where $\alpha$ is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, $dim$ will be set to 3 and anisotropy will be disabled. $rescale$ can be set to e.g. earth’s radius, to have a meaningful $len\_scale$ parameter. Default: False

• **var\_raw** *(float or None, optional)* – raw variance of the model which will be multiplied with $\text{CovModel.var\_factor}$ to result in the actual variance. If given, $var$ will be ignored. (This is just for models that override $\text{CovModel.var\_factor}$) Default: None

• **hankel\_kw** *(dict or None, optional)* – Modify the init-arguments of $\text{hankel.SymmetricFourierTransform}$ used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to {"a": -1, "b": 1, "N": 1000, "h": 0.001}. Default: None

• **opt\_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section *Other Parameters.*

**Attributes**

- **angles** *(numpy.ndarray)*: Rotation angles (in rad) of the model.
- **anis** *(numpy.ndarray)*: The anisotropy factors of the model.
- **anis\_bounds** *(list)*: Bounds for the nugget.
- **arg** *(list of str)*: Names of all arguments.
- **arg\_bounds** *(dict)*: Bounds for all parameters.
- **arg\_list** *(list of float)*: Values of all arguments.
- **dim** *(int)*: The dimension of the model.
- **dist\_func** *(tuple of callable)*: pdf, cdf and ppf.
- **do\_rotation** *(bool)*: State if a rotation is performed.
- **field\_dim** *(int)*: The field dimension of the model.
- **hankel\_kw** *(dict)*: $\text{hankel.SymmetricFourierTransform}$ kwargs.
- **has\_cdf** *(bool)*: State if a cdf is defined by the user.
- **has\_ppf** *(bool)*: State if a ppf is defined by the user.
- **integral\_scale** *(float)*: The main integral scale of the model.
- **integral\_scale\_vec** *(numpy.ndarray)*: The integral scales in each direction.
- **is\_isotropic** *(bool)*: State if a model is isotropic.
- **iso\_arg** *(list of str)*: Names of isotropic arguments.
- **iso\_arg\_list** *(list of float)*: Values of isotropic arguments.
- **latlon** *(bool)*: Whether the model depends on geographical coords.
- **len\_rescaled** *(float)*: The rescaled main length scale of the model.
- **len\_scale** *(float)*: The main length scale of the model.
- **len\_scale\_bounds** *(list)*: Bounds for the length scale.
len_scale_vec: \text{numpy.ndarray} - The length scales in each direction.

name: \text{str} - The name of the CovModel class.

nugget: \text{float} - The nugget of the model.

nugget_bounds: \text{list} - Bounds for the nugget.

opt_arg: \text{list of str} - Names of the optional arguments.

opt_arg_bounds: \text{dict} - Bounds for the optional arguments.

pykrige_angle: 2D rotation angle for pykrige.

pykrige_angle_x: 3D rotation angle around x for pykrige.

pykrige_angle_y: 3D rotation angle around y for pykrige.

pykrige_angle_z: 3D rotation angle around z for pykrige.

pykrige_anis: 2D anisotropy ratio for pykrige.

pykrige_anis_y: 3D anisotropy ratio in y direction for pykrige.

pykrige_anis_z: 3D anisotropy ratio in z direction for pykrige.

pykrige_kwargs: Keyword arguments for pykrige routines.

rescale: \text{float} - Rescale factor for the length scale of the model.

sill: \text{float} - The sill of the variogram.

var: \text{float} - The variance of the model.

var_bounds: \text{list} - Bounds for the variance.

var_raw: \text{float} - The raw variance of the model without factor.

\textbf{Methods}

\begin{tabular}{ll}
\textbf{anisometrize}(pos) & Bring a position tuple into the anisotropic coordinate-system. \\
\textbf{calc_integral_scale}() & Calculate the integral scale of the isotrope model. \\
\textbf{check_arg_bounds}() & Check arguments to be within their given bounds. \\
\textbf{check_dim}(dim) & Check the given dimension. \\
\textbf{check_opt_arg}() & Run checks for the optional arguments. \\
\textbf{cor_axis}(r[, axis]) & Correlation along axis of anisotropy. \\
\textbf{cor_spatial}(pos) & Spatial correlation respecting anisotropy and rotation. \\
\textbf{cor_yadrenko}(zeta) & Yadrenko correlation for great-circle distance from latlon-pos. \\
\textbf{cov_axis}(r[, axis]) & Covariance along axis of anisotropy. \\
\textbf{cov_nugget}(r) & Isotropic covariance of the model respecting the nugget at r=0. \\
\textbf{cov_spatial}(pos) & Spatial covariance respecting anisotropy and rotation. \\
\textbf{cov_yadrenko}(zeta) & Yadrenko covariance for great-circle distance from latlon-pos. \\
\textbf{default_arg_bounds}() & Provide default boundaries for arguments. \\
\textbf{default_opt_arg}() & Provide default optional arguments by the user. \\
\textbf{default_opt_arg_bounds}() & Provide default boundaries for optional arguments. \\
\textbf{default_rescale}() & Provide default rescaling factor. \\
\textbf{fit_variogram}(x\_data, y\_data[, anis, sill, ...]) & Fitting the variogram-model to an empirical variogram.
\end{tabular}

continues on next page
Table 13 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>fix_dim()</code></td>
<td>Set a fix dimension for the model.</td>
</tr>
<tr>
<td><code>isometrize(pos)</code></td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td><code>ln_spectral_rad_pdf(r)</code></td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td><code>main_axes()</code></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><code>percentile_scale([per])</code></td>
<td>Calculate the percentile scale of the isotropic model.</td>
</tr>
<tr>
<td><code>plot([func])</code></td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td><code>pykrige_vario([args, r])</code></td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td><code>set_arg_bounds([check_args])</code></td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td><code>spectral_density(k)</code></td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td><code>spectral_rad_pdf(r)</code></td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td><code>spectrum(k)</code></td>
<td>Spectrum of the covariance model.</td>
</tr>
<tr>
<td><code>var_factor()</code></td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td><code>vario_axis(r[, axis])</code></td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td><code>vario_nugget(r)</code></td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>vario_spatial(pos)</code></td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>vario_yadrenko(zeta)</code></td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
</tbody>
</table>

**anisometrize(pos)**

Bring a position tuple into the anisotropic coordinate-system.

**calc_integral_scale()**

Calculate the integral scale of the isotropic model.

**check_arg_bounds()**

Check arguments to be within their given bounds.

**check_dim(dim)**

Check the given dimension.

**check_opt_arg()**

Run checks for the optional arguments.

This is in addition to the bound-checks

---

**Notes**

- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

**cor_axis(r, axis=0)**

Correlation along axis of anisotropy.

**cor_spatial(pos)**

Spatial correlation respecting anisotropy and rotation.

**cor_yadrenko(zeta)**

Yadrenko correlation for great-circle distance from latlon-pos.

**cov_axis(r, axis=0)**

Covariance along axis of anisotropy.

**cov_nugget(r)**

Isotropic covariance of the model respecting the nugget at r=0.
**cov.spatial** \((\text{pos})\)
Spatial covariance respecting anisotropy and rotation.

**cov.yadrenko** \((\text{zeta})\)
Yadrenko covariance for great-circle distance from latlon-pos.

**default_arg_bounds** ()
Provide default boundaries for arguments.
Given as a dictionary.

**default_opt_arg** ()
Provide default optional arguments by the user.
Should be given as a dictionary when overridden.

**default_opt_arg_bounds** ()
Provide default boundaries for optional arguments.

**default_rescale** ()
Provide default rescaling factor.

**fit.variogram** \((x_{\text{data}}, y_{\text{data}}, \text{anis}=\text{True}, \text{sill}=\text{None}, \text{init.guess}=\text{'default'}, \text{weights}=\text{None}, \text{method}=\text{'trf'}, \text{loss}=\text{'soft_l1'}, \text{max_eval}=\text{None}, \text{return.r2}=\text{False}, \text{curve.fit.kwars}=\text{None}, **\text{para.select})\)
Fitting the variogram-model to an empirical variogram.

**Parameters**

- **x.data** \((\text{numpy.ndarray})\) — The bin-centers of the empirical variogram.
- **y.data** \((\text{numpy.ndarray})\) — The measured variogram If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.
- **anis** \((\text{bool}, \text{optional})\) — In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it "False". You could also pass a fixed value to be set in the model. Then the anisotropy ratios won't be altered during fitting. Default: True
- **sill** \((\text{float} \text{or} \text{bool}, \text{optional})\) — Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:
  
  \[ \text{sill} = \text{var} + \text{nugget} \]
  
  - if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.
  
  If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None
- **init.guess** \((\text{str} \text{or} \text{dict}, \text{optional})\) — Initial guess for the estimation. Either:
  
  - "default": using the default values of the covariance model ("len_scale" will be mean of given bin centers; "var" and "nugget" will be mean of given variogram values (if in given bounds))
  
  - "current": using the current values of the covariance model
  
  - dict: dictionary with parameter names and given value (separate "default" can be set to "default" or "current" for unspecified values to get same behavior as given above ("default" by default)) Example: {"len.scale": 10, "default": "current"}

  Default: "default"
• **weights** *(str, numpy.ndarray, callable, optional)* – Weights applied to each point in the estimation. Either:
  - `'inv'`: inverse distance \( \frac{1}{x_{data} + 1} \)
  - list: weights given per bin
  - callable: function applied to \( x_{data} \)

If callable, it must take a 1-d ndarray. Then \( weights = f(x_{data}) \). Default: None

• **method** *({'trf', 'dogbox'}, optional)* – Algorithm to perform minimization.
  - `'trf'`: Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - `'dogbox'`: dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

Default: `'trf'`

• **loss** *(str or callable, optional)* – Determines the loss function in scipys curve_fit. The following keyword values are allowed:
  - `'linear'` (default): \( \rho(z) = z \). Gives a standard least-squares problem.
  - `'soft_l1'`: \( \rho(z) = 2 * ((1 + z)^{0.5} - 1) \). The smooth approximation of \( \|z\|_1 \) (absolute value) loss. Usually a good choice for robust least squares.
  - `'huber'`: \( \rho(z) = z \) if \( z \leq 1 \) else \( 2z^{0.5} - 1 \). Works similarly to `'soft_l1'`.
  - `'cauchy'`: \( \rho(z) = \ln(1 + z) \). Severely weakens outliers influence, but may cause difficulties in optimization process.
  - `'arctan'`: \( \rho(z) = \arctan(z) \). Limits a maximum loss on a single residual, has properties similar to `'cauchy'`.

If callable, it must take a 1-d ndarray \( z=f**2 \) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: `'soft_l1'`

• **max_eval** *(int or None, optional)* – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: \( 100 * n \).

• **return_r2** *(bool, optional)* – Whether to return the r2 score of the estimation. Default: False

• **curve_fit_kwargs** *(dict, optional)* – Other keyword arguments passed to scipys curve_fit. Default: None

• ****para_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters wont be fitted. By default, all parameters are fitted.

**Returns**

• **fit_para** *(dict)* – Dictionary with the fitted parameter values

• **pcov** *(numpy.ndarray)* – The estimated covariance of \( popt \) from scipys.optimize.curve_fit. To compute one standard deviation errors on the parameters use \( \text{perr} = np.sqrt(np.diag(pcov)) \).

• **r2_score** *(float, optional)* – r2 score of the curve fitting results. Only if return_r2 is True.
Notes
You can set the bounds for each parameter by accessing `CovModel.set_arg_bounds`.
The fitted parameters will be instantly set in the model.

```python
fix_dim()
```
Set a fix dimension for the model.

```python
isometrize(pos)
```
Make a position tuple ready for isotropic operations.

```python
ln_spectral_rad_pdf(r)
```
Log radial spectral density of the model.

```python
main_axes()
```
Axes of the rotated coordinate-system.

```python
percentile_scale(per=0.9)
```
Calculate the percentile scale of the isotrope model.
This is the distance, where the given percentile of the variance is reached by the variogram.

```python
plot(func='variogram', **kwargs)
```
Plot a function of a the CovModel.

**Parameters**

- **func** *(str, optional)* – Function to be plotted. Could be one of:
  - ”variogram”
  - ”covariance”
  - ”correlation”
  - ”vario.spatial”
  - ”cov.spatial”
  - ”cor.spatial”
  - ”vario_yadrenko”
  - ”cov_yadrenko”
  - ”cor_yadrenko”
  - ”vario.axis”
  - ”cov.axis”
  - ”cor.axis”
  - ”spectrum”
  - ”spectral_density”
  - ”spectral_rad_pdf”

- **kwargs** – Keyword arguments forwarded to the plotting function “plot_” + `func` in `gstools.covmodel.plot`.

See also:

`gstools.covmodel.plot`

```python
pykrige.vario(args=None, r=0)
```
Isotropic variogram of the model for pykrige.

```python
set_arg_bounds(check_args=True, **kwargs)
```
Set bounds for the parameters of the model.
Parameters

- **check_args** *(bool, optional)* – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True

- ****kwargs** – Parameter name as keyword (“var”, “len_scale”, “nugget”, <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of “oo”, “cc”, “oc” or “co” to define if the bounds are open (“o”) or closed (“c”).

**spectral_density** *(k)*
Spectral density of the covariance model.

This is given by:

\[
\tilde{S}(k) = \frac{S(k)}{\sigma^2}
\]

Where \(S(k)\) is the spectrum of the covariance model.

**Parameters**

- **k** *(float)* – Radius of the phase: \(k = ||k||\)

**spectral_rad_pdf** *(r)*
Radial spectral density of the model.

**spectrum** *(k)*
Spectrum of the covariance model.

This is given by:

\[
S(k) = \left(\frac{1}{2\pi}\right)^n \int C(r) e^{ikr} d^n r
\]

Internally, this is calculated by the hankel transformation:

\[
S(k) = \left(\frac{1}{2\pi}\right)^n \frac{(2\pi)^{n/2}}{k^{n/2-1}} \int_0^\infty r^{n/2} C(r) J_{n/2-1}(kr) dr
\]

Where \(C(r)\) is the covariance function of the model.

**Parameters**

- **k** *(float)* – Radius of the phase: \(k = ||k||\)

**var_factor** *
Factor for the variance.

**vario_axis** *(r, axis=0)*
Variogram along axis of anisotropy.

**vario_nugget** *(r)*
Isotropic variogram of the model respecting the nugget at r=0.

**vario_spatial** *(pos)*
Spatial variogram respecting anisotropy and rotation.

**vario_yadrenko** *(zeta)*
Yadrenko variogram for great-circle distance from latlon-pos.

**property angles**
Rotation angles (in rad) of the model.

Type: numpy.ndarray

**property anis**
The anisotropy factors of the model.

Type: numpy.ndarray

**property anis_bounds**
Bounds for the nugget.
Notes

Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type list

property arg
Names of all arguments.

Type list of str

property arg_bounds
Bounds for all parameters.

Notes

Keys are the arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type dict

property arg_list
Values of all arguments.

Type list of float

property dim
The dimension of the model.

Type int

property dist_func
pdf, cdf and ppf.

Spectral distribution info from the model.

Type tuple of callable

property do_rotation
State if a rotation is performed.

Type bool

property field_dim
The field dimension of the model.

Type int

property hankel_kw

hankel.SymmetricFourierTransform kwargs.

Type dict

property has_cdf
State if a cdf is defined by the user.

Type bool

property has_ppf
State if a ppf is defined by the user.

Type bool
property integral_scale
The main integral scale of the model.

Raises ValueError – If integral scale is not setable.

Type float

property integral_scale_vec
The integral scales in each direction.

Notes
This is calculated by:

- \( \text{integral_scale_vec}[0] = \text{integral_scale} \)
- \( \text{integral_scale_vec}[1] = \text{integral_scale} \times \text{anis}[0] \)
- \( \text{integral_scale_vec}[2] = \text{integral_scale} \times \text{anis}[1] \)

Type numpy.ndarray

property is_isotropic
State if a model is isotropic.

Type bool

property iso_arg
Names of isotropic arguments.

Type list of str

property iso_arg_list
Values of isotropic arguments.

Type list of float

property latlon
Whether the model depends on geographical coords.

Type bool

property len_rescaled
The rescaled main length scale of the model.

Type float

property len_scale
The main length scale of the model.

Type float

property len_scale_bounds
Bounds for the length scale.

Notes
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type list
**property len_scale_vec**

The length scales in each direction.

---

**Notes**

This is calculated by:

- \( \text{len_scale_vec}[0] = \text{len_scale} \)
- \( \text{len_scale_vec}[1] = \text{len_scale} \times \text{anis}[0] \)
- \( \text{len_scale_vec}[2] = \text{len_scale} \times \text{anis}[1] \)

**Type** `numpy.ndarray`

**property name**

The name of the CovModel class.

**Type** `str`

**property nugget**

The nugget of the model.

**Type** `float`

**property nugget_bounds**

Bounds for the nugget.

---

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(\text{<type>}\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** `list`

**property opt_arg**

Names of the optional arguments.

**Type** `list of str`

**property opt_arg_bounds**

Bounds for the optional arguments.

---

**Notes**

Keys are the opt-arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(\text{<type>}\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** `dict`

**property pykrige_angle**

2D rotation angle for pykrige.

**property pykrige_angle_x**

3D rotation angle around x for pykrige.

**property pykrige_angle_y**

3D rotation angle around y for pykrige.
property pykrige_angle_z
3D rotation angle around z for pykrige.

property pykrige_anis
2D anisotropy ratio for pykrige.

property pykrige_anis_y
3D anisotropy ratio in y direction for pykrige.

property pykrige_anis_z
3D anisotropy ratio in z direction for pykrige.

property pykrige_kwargs
Keyword arguments for pykrige routines.

property rescale
Rescale factor for the length scale of the model.

   Type  float

property sill
The sill of the variogram.

   Notes
   This is calculated by:
   
   * sill = variance + nugget

   Type  float

property var
The variance of the model.

   Type  float

property var_bounds
Bounds for the variance.

   Notes
   Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

   Type  list

property var_raw
The raw variance of the model without factor.

(See. CovModel.var_factor)

   Type  float
### Covariance Models

#### Standard Covariance Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gaussian</td>
<td>The Gaussian covariance model.</td>
</tr>
<tr>
<td>Exponential</td>
<td>The Exponential covariance model.</td>
</tr>
<tr>
<td>Matern</td>
<td>The Matérn covariance model.</td>
</tr>
<tr>
<td>Stable</td>
<td>The stable covariance model.</td>
</tr>
<tr>
<td>Rational</td>
<td>The rational quadratic covariance model.</td>
</tr>
<tr>
<td>Cubic</td>
<td>The cubic covariance model.</td>
</tr>
<tr>
<td>Linear</td>
<td>The bounded linear covariance model.</td>
</tr>
<tr>
<td>Circular</td>
<td>The circular covariance model.</td>
</tr>
<tr>
<td>Spherical</td>
<td>The Spherical covariance model.</td>
</tr>
<tr>
<td>HyperSpherical</td>
<td>The Hyper-Spherical covariance model.</td>
</tr>
<tr>
<td>SuperSpherical</td>
<td>The Super-Spherical covariance model.</td>
</tr>
<tr>
<td>JBessel</td>
<td>The J-Bessel hole model.</td>
</tr>
</tbody>
</table>

**gstools.covmodel.Gaussian**

```python
class gstools.covmodel.Gaussian(dim=3, var=1.0, len_scale=1.0, nugget=0.0, anis=1.0, angles=0.0, integral_scale=None, rescale=None, latlon=False, var_raw=None, hankel_kw=None, **opt_arg)
```

Bases: gstools.covmodel.base.CovModel

The Gaussian covariance model.

**Notes**

This model is given by the following variogram [Webster2007]:

\[
\gamma(r) = \sigma^2 \left( 1 - \exp \left( - \left( \frac{s \cdot r}{\ell} \right)^2 \right) \right) + n
\]

Where the standard rescale factor is \( s = \frac{2\sqrt{\pi}}{\ell} \).

**References**

- [Webster2007](#)
If only one value is given in 3D, \( e_y \) will be set to 1. This value will be ignored, if multiple \( \text{len}_s \) are given. Default: 1.0

- **angles** (float or list, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)
  Default: 0.0

- **integral_scale** (float or list or None, optional) – If given, \( \text{len}_s \) will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None

- **rescale** (float or None, optional) – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None

- **latlon** (bool, optional) – Whether the model is describing 2D fields on earth’s surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance \( r \) will be replaced by \( 2 \sin(\alpha/2) \), where \( \alpha \) is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, \( \text{dim} \) will be set to 3 and anisotropy will be disabled. \( \text{rescale} \) can be set to e.g. earth’s radius, to have a meaningful \( \text{len}_s \) parameter. Default: False

- **var_raw** (float or None, optional) – raw variance of the model which will be multiplied with \( \text{CovModel.var factor} \) to result in the actual variance. If given, \( \text{var} \) will be ignored. (This is just for models that override \( \text{CovModel.var factor} \)) Default: None

- **hankel_kw** (dict or None, optional) – Modify the init-arguments of hankel. SymmetricFourierTransform used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to \{"a": -1, "b": 1, "N": 1000, "h": 0.001\}. Default: None

- ****opt_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section Other Parameters.

Attributes

- angles numpy.ndarray: Rotation angles (in rad) of the model.
- anis numpy.ndarray: The anisotropy factors of the model.
- anis_bounds list: Bounds for the nugget.
- arg list of str: Names of all arguments.
- arg_bounds dict: Bounds for all parameters.
- arg_list list of float: Values of all arguments.
- dim int: The dimension of the model.
- dist_func tuple of callable: pdf, cdf and ppf.
- do_rotation bool: State if a rotation is performed.
- field_dim int: The field dimension of the model.
- hankel_kw dict: hankel.SymmetricFourierTransform kwargs.
- has_cdf bool: State if a cdf is defined by the user.
- has_ppf bool: State if a ppf is defined by the user.
- integral_scale float: The main integral scale of the model.
integral_scale_vec: The integral scales in each direction.

is_isotropic: State if a model is isotropic.

iso_arg: Names of isotropic arguments.

iso_arg_list: Values of isotropic arguments.

latlon: Whether the model depends on geographical coords.

len_rescaled: The rescaled main length scale of the model.

len_scale: The main length scale of the model.

len_scale_bounds: Bounds for the length scale.

len_scale_vec: The length scales in each direction.

name: The name of the CovModel class.

nugget: The nugget of the model.

nugget_bounds: Bounds for the nugget.

opt_arg: Names of the optional arguments.

opt_arg_bounds: Bounds for the optional arguments.

pykrige_angle: 2D rotation angle for pykrige.

pykrige_angle_x: 3D rotation angle around x for pykrige.

pykrige_angle_y: 3D rotation angle around y for pykrige.

pykrige_angle_z: 3D rotation angle around z for pykrige.

pykrige_anis: 2D anisotropy ratio for pykrige.

pykrige_anis_y: 3D anisotropy ratio in y direction for pykrige.

pykrige_anis_z: 3D anisotropy ratio in z direction for pykrige.

pykrige_kwargs: Keyword arguments for pykrige routines.

rescale: Rescale factor for the length scale of the model.

sill: The sill of the variogram.

var: The variance of the model.

var_bounds: Bounds for the variance.

var_raw: The raw variance of the model without factor.

---

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anisometrize(pos)</td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td>calc_integral_scale()</td>
<td>Calculate the integral scale of the isotrope model.</td>
</tr>
<tr>
<td>check_arg_bounds()</td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td>check_dim(dim)</td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td>check_opt_arg()</td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td>cor(h)</td>
<td>Gaussian normalized correlation function.</td>
</tr>
<tr>
<td>cor_axis(r, axis)</td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td>cor_spatial(pos)</td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cor_yadrenko(zeta)</td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
</tbody>
</table>

continues on next page
Table 15 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>correlation(r)</strong></td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td><strong>cov_axis(r[, axis])</strong></td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cov_nugget(r)</strong></td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><strong>cov_spatial(pos)</strong></td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cov_yadrenko(zeta)</strong></td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>covariance(r)</strong></td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td><strong>default_arg_bounds()</strong></td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td><strong>default_opt_arg()</strong></td>
<td>Provide default optional arguments by the user.</td>
</tr>
<tr>
<td><strong>default_opt_arg_bounds()</strong></td>
<td>Provide default boundaries for optional arguments.</td>
</tr>
<tr>
<td><strong>default_rescale()</strong></td>
<td>Gaussian rescaling factor to result in integral scale.</td>
</tr>
<tr>
<td><strong>fit_variogram(x_data, y_data[, anis, sill, ...])</strong></td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td><strong>fix_dim()</strong></td>
<td>Set a fix dimension for the model.</td>
</tr>
<tr>
<td><strong>isometrize(pos)</strong></td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td><strong>ln_spectral_rad_pdf(r)</strong></td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td><strong>main_axes()</strong></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><strong>percentile_scale([per])</strong></td>
<td>Calculate the percentile scale of the isotropo model.</td>
</tr>
<tr>
<td><strong>plot([func])</strong></td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td><strong>pykrige_vario([args, r])</strong></td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td><strong>set_arg_bounds([check_args])</strong></td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td><strong>spectral_density(k)</strong></td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td><strong>spectral_rad_cdf(r)</strong></td>
<td>Gaussian radial spectral cdf.</td>
</tr>
<tr>
<td><strong>spectral_rad_pdf(r)</strong></td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td><strong>spectral_rad_ppf(u)</strong></td>
<td>Gaussian radial spectral ppf.</td>
</tr>
<tr>
<td><strong>spectrum(k)</strong></td>
<td>Spectrum of the covariance model.</td>
</tr>
<tr>
<td><strong>var_factor()</strong></td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td><strong>vario_axis(r[, axis])</strong></td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>vario_nugget(r)</strong></td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><strong>vario_spatial(pos)</strong></td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>vario_yadrenko(zeta)</strong></td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>variogram(r)</strong></td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

**anisometrize(pos)**
Bring a position tuple into the anisotropic coordinate-system.

**calc_integral_scale()**
Calculate the integral scale of the isotrope model.

**check_arg_bounds()**
Check arguments to be within their given bounds.

**check_dim(dim)**
Check the given dimension.

**check_opt_arg()**
Run checks for the optional arguments.
This is in addition to the bound-checks

**Notes**

3.6. gstools.covmodel
• You can use this to raise a ValueError/warning
• Any return value will be ignored
• This method will only be run once, when the class is initialized

**cor**\((h)\)
Gaussian normalized correlation function.

**cor_axis**\((r, axis=0)\)
Correlation along axis of anisotropy.

**cor_spatial**\((pos)\)
Spatial correlation respecting anisotropy and rotation.

**cor_yadrenko**\((zeta)\)
Yadrenko correlation for great-circle distance from latlon-pos.

**correlation**\((r)\)
Correlation function of the model.

**cov_axis**\((r, axis=0)\)
Covariance along axis of anisotropy.

**cov_nugget**\((r)\)
Isotropic covariance of the model respecting the nugget at r=0.

**cov_spatial**\((pos)\)
Spatial covariance respecting anisotropy and rotation.

**cov_yadrenko**\((zeta)\)
Yadrenko covariance for great-circle distance from latlon-pos.

**covariance**\((r)\)
Covariance of the model.

**default_arg_bounds**\()\)
Provide default boundaries for arguments.

Given as a dictionary.

**default_opt_arg**\()\)
Provide default optional arguments by the user.

Should be given as a dictionary when overridden.

**default_opt_arg_bounds**\()\)
Provide default boundaries for optional arguments.

**default_rescale**\()\)
Gaussian rescaling factor to result in integral scale.

**fit_variogram**\((x\_data, y\_data, anis=True, sill=None, init\_guess='default', weights=None, method='trf', loss='soft\_l1', max\_eval=None, return\_r2=False, curve\_fit\_kwargs=None, **para\_select)\)
Fitting the variogram-model to an empirical variogram.

**Parameters**

• **x\_data** (numpy.ndarray) – The bin-centers of the empirical variogram.

• **y\_data** (numpy.ndarray) – The measured variogram. If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.

• **anis** (bool, optional) – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios won’t be altered during fitting. Default: True
• **sill** *(float or bool, optional)* – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:

- \( \text{sill} = \text{var} + \text{nugget} \)

- if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.

If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If \( \text{sill} = \text{False} \), it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None

• **init_guess** *(str or dict, optional)* – Initial guess for the estimation. Either:

- "default": using the default values of the covariance model ("len_scale" will be mean of given bin centers; "var" and "nugget" will be mean of given variogram values (if in given bounds))

- "current": using the current values of the covariance model

- dict: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above ("default" by default)) Example: {"len_scale": 10, "default": "current"}

Default: "default"

• **weights** *(str, numpy.ndarray, callable, optional)* – Weights applied to each point in the estimation. Either:

- "inv": inverse distance \( \frac{1}{(x_{\text{data}} + 1)} \)

- list: weights given per bin

- callable: function applied to \( x_{\text{data}} \)

If callable, it must take a 1-d ndarray. Then \( weights = f(x_{\text{data}}) \). Default: None

• **method** *(\{'trf', 'dogbox'\}, optional)* – Algorithm to perform minimization.

- "trf": Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.

- "dogbox": dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

Default: ‘trf’

• **loss** *(str or callable, optional)* – Determines the loss function in scipy’s curve_fit. The following keyword values are allowed:

- "linear" (default): \( \rho(z) = z \). Gives a standard least-squares problem.

- "soft_l1": \( \rho(z) = 2 \times ((1 + z)^{0.5} - 1) \). The smooth approximation of \( \| \) (absolute value) loss. Usually a good choice for robust least squares.

- "huber": \( \rho(z) = z \) if \( z \leq 1 \) else \( 2z^{0.5} - 1 \). Works similarly to 'soft_l1'.

- "cauchy": \( \rho(z) = \ln(1 + z) \). Severely weakens outliers influence, but may cause difficulties in optimization process.

- "arctan": \( \rho(z) = \arctan(z) \). Limits a maximum loss on a single residual, has properties similar to 'cauchy'.
If callable, it must take a 1-d ndarray \( z = f \) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_l1’

- **max_eval** (int or None, optional) – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.
- **return_r2** (bool, optional) – Whether to return the r2 score of the estimation. Default: False
- **curve_fit_kwargs** (dict, optional) – Other keyword arguments passed to scipy curve_fit. Default: None
- ****para_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters won’t be fitted. By default, all parameters are fitted.

Returns

- **fit_para** (dict) – Dictionary with the fitted parameter values
- **pcov** (numpy.ndarray) – The estimated covariance of \( popt \) from scipy.optimize.curve_fit. To compute one standard deviation errors on the parameters use \( \text{perr} = \text{np.sqrt(np.diag(pcov))} \).
- **r2_score** (float, optional) – r2 score of the curve fitting results. Only if return_r2 is True.

Notes

You can set the bounds for each parameter by accessing \( \text{CovModel.set_arg_bounds} \).

The fitted parameters will be instantly set in the model.

**fix_dim**

Set a fix dimension for the model.

**isometrize** (pos)

Make a position tuple ready for isotropic operations.

**ln_spectral_rad_pdf** (r)

Log radial spectral density of the model.

**main_axes**

Axes of the rotated coordinate-system.

**percentile_scale** (per=0.9)

Calculate the percentile scale of the isotrope model.

This is the distance, where the given percentile of the variance is reached by the variogram

**plot** (func='variogram', **kwargs)

Plot a function of a the CovModel.

Parameters

- **func** (str, optional) – Function to be plotted. Could be one of:
  - ”variogram”
  - ”covariance”
  - ”correlation”
  - ”vario_spatial”
  - ”cov_spatial”
• **kwargs – Keyword arguments forwarded to the plotting function “plot_” + func
in gstools.covmodel.plot.

See also:
gstools.covmodel.plot

`pykrige_vario` (args=None, r=0)
Isotropic variogram of the model for pykrige.

`set_arg_bounds` (check_args=True, **kwargs)
Set bounds for the parameters of the model.

Parameters

• check_args (bool, optional) – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True

• **kwargs – Parameter name as keyword (“var”, “len_scale”, “nugget”, <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of “oo”, “cc”, “oc” or “co” to define if the bounds are open (“o”) or closed (“c”).

`spectral_density` (k)
Spectral density of the covariance model.
This is given by:

\[ \tilde{S}(k) = \frac{S(k)}{\sigma^2} \]

Where \( S(k) \) is the spectrum of the covariance model.

Parameters k (float) – Radius of the phase: \( k = ||k|| \)

`spectral_rad_cdf` (r)
Gaussian radial spectral cdf.

`spectral_rad_pdf` (r)
Radial spectral density of the model.

`spectral_rad_ppf` (u)
Gaussian radial spectral ppf.

Notes
Not defined for 3D.

`spectrum` (k)
Spectrum of the covariance model.
This is given by:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \int C(r) e^{i k \cdot r} d^n r \]

Internally, this is calculated by the hankel transformation:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \cdot \left( \frac{2\pi}{k^{n/2-1}} \right) \int_0^\infty r^{n/2} C(r) J_{n/2-1}(kr) dr \]

Where \( C(r) \) is the covariance function of the model.

**Parameters**

- \( k \) (float) – Radius of the phase: \( k = ||k|| \)
- \( \text{var\_factor}() \)
  - Factor for the variance.
- \( \text{vario\_axis}(r, \text{axis}=0) \)
  - Variogram along axis of anisotropy.
- \( \text{vario\_nugget}(r) \)
  - Isotropic variogram of the model respecting the nugget at \( r=0 \).
- \( \text{vario\_spatial}(\text{pos}) \)
  - Spatial variogram respecting anisotropy and rotation.
- \( \text{vario\_yadrenko}(\zeta) \)
  - Yadrenko variogram for great-circle distance from latlon-pos.
- \( \text{variogram}(r) \)
  - Isotropic variogram of the model.

**property angles**

- Rotation angles (in rad) of the model.
  - **Type** numpy.ndarray

**property anis**

- The anisotropy factors of the model.
  - **Type** numpy.ndarray

**property anis\_bounds**

- Bounds for the nugget.
  - **Type** list

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{type}]\) where \( \text{type} \) is one of \"oo\", \"cc\", \"oc\" or \"co\" to define if the bounds are open ("o") or closed ("c").

**property arg**

- Names of all arguments.
  - **Type** list of str

**property arg\_bounds**

- Bounds for all parameters.
  - **Notes**

Keys are the arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, \text{type}]\) where \( \text{type} \) is one of \"oo\", \"cc\", \"oc\" or \"co\" to define if the bounds are open ("o") or closed ("c").
**Type** `dict`

**property arg_list**
Values of all arguments.

**Type** `list of float`

**property dim**
The dimension of the model.

**Type** `int`

**property dist_func**
pdf, cdf and ppf.
Spectral distribution info from the model.

**Type** `tuple of callable`

**property do_rotation**
State if a rotation is performed.

**Type** `bool`

**property field_dim**
The field dimension of the model.

**Type** `int`

**property hankel_kw**
`hankel.SymmetricFourierTransform` kwargs.

**Type** `dict`

**property has_cdf**
State if a cdf is defined by the user.

**Type** `bool`

**property has_ppf**
State if a ppf is defined by the user.

**Type** `bool`

**property integral_scale**
The main integral scale of the model.

**Raises** `ValueError` – If integral scale is not setable.

**Type** `float`

**property integral_scale_vec**
The integral scales in each direction.

**Notes**
This is calculated by:

- `integral_scale_vec[0] = integral_scale`
- `integral_scale_vec[1] = integral_scale*anis[0]`

**Type** `numpy.ndarray`

**property is_isotropic**
State if a model is isotropic.
Type `bool`

**property iso_arg**

Names of isotropic arguments.

Type `list of str`

**property iso_arg_list**

Values of isotropic arguments.

Type `list of float`

**property latlon**

Whether the model depends on geographical coords.

Type `bool`

**property len_rescaled**

The rescaled main length scale of the model.

Type `float`

**property len_scale**

The main length scale of the model.

Type `float`

**property len_scale_bounds**

Bounds for the length scale.

Notes

Is a list of 2 or 3 values: `[a, b]` or `[a, b, <type>]` where `<type>` is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type `list`

**property len_scale_vec**

The length scales in each direction.

Notes

This is calculated by:

- `len_scale_vec[0] = len_scale`
- `len_scale_vec[1] = len_scale*anis[0]`

Type `numpy.ndarray`

**property name**

The name of the CovModel class.

Type `str`

**property nugget**

The nugget of the model.

Type `float`
property nugget_bounds
  Bounds for the nugget.

Notes
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type list

property opt_arg
  Names of the optional arguments.

Type list of str

property opt_arg_bounds
  Bounds for the optional arguments.

Notes
Keys are the opt-arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type dict

property pykrige_angle
  2D rotation angle for pykrige.

property pykrige_angle_x
  3D rotation angle around x for pykrige.

property pykrige_angle_y
  3D rotation angle around y for pykrige.

property pykrige_angle_z
  3D rotation angle around z for pykrige.

property pykrige_anis
  2D anisotropy ratio for pykrige.

property pykrige_anis_y
  3D anisotropy ratio in y direction for pykrige.

property pykrige_anis_z
  3D anisotropy ratio in z direction for pykrige.

property pykrige_kwargs
  Keyword arguments for pykrige routines.

property rescale
  Rescale factor for the length scale of the model.

Type float

property sill
  The sill of the variogram.

Notes
This is calculated by:
  * sill = variance + nugget
**property var**
The variance of the model.

**property var_bounds**
Bounds for the variance.

**Notes**
Is a list of 2 or 3 values: \([a, b] \) or \([a, b, <type>]\) where \(<type>\) is one of \("oo", "cc", "oc"\) or \("co"\) to define if the bounds are open ("o") or closed ("c").

**property var_raw**
The raw variance of the model without factor.

(See. CovModel.var_factor)

**Type float**
**class** `gstools.covmodel.Exponential(dim=3, var=1.0, len_scale=1.0, nugget=0.0, anis=1.0, angles=0.0, integral_scale=None, rescale=None, latlon=False, var_raw=None, hankel_kw=None, **opt_arg)`

Bases: `gstools.covmodel.base.CovModel`

The Exponential covariance model.

**Notes**

This model is given by the following variogram [Webster2007]:

\[ \gamma(r) = \sigma^2 \left( 1 - \exp \left( -s \cdot \frac{r}{\ell} \right) \right) + n \]

Where the standard rescale factor is \( s = 1 \).

**References**

**Parameters**

- `dim` (int, optional) – dimension of the model. Default: 3
- `var` (float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- `len_scale` (float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, `anis` will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- `nugget` (float, optional) – nugget of the model. Default: 0.0
- `anis` (float or list, optional) – anisotropy ratios in the transversal directions \([e_y, e_z]\).
  - `e_y = l_y / l_x`
  - `e_z = l_z / l_x`
  If only one value is given in 3D, `e_y` will be set to 1. This value will be ignored, if multiple `len_scales` are given. Default: 1.0
- `angles` (float or list, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)
  Default: 0.0
- `integral_scale` (float or list or None, optional) – If given, `len_scale` will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None
- `rescale` (float or None, optional) – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None
- `latlon` (bool, optional) – Whether the model is describing 2D fields on earth’s surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial
distance $r$ will be replaced by $2 \sin(\alpha/2)$, where $\alpha$ is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, $\dim$ will be set to 3 and anisotropy will be disabled. $\text{rescale}$ can be set to e.g. earth’s radius, to have a meaningful $\text{len\_scale}$ parameter. Default: False

- **\text{var\_raw}** (float or None, optional) – raw variance of the model which will be multiplied with $\text{CovModel.var\_factor}$ to result in the actual variance. If given, $\text{var}$ will be ignored. (This is just for models that override $\text{CovModel.var\_factor}$) Default: None

- **\text{hankel\_kw}** (dict or None, optional) – Modify the init-arguments of $\text{hankel.SymmetricFourierTransform}$ used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to {"a": -1, "b": 1, "N": 1000, "h": 0.001}. Default: None

- **\*\*\text{opt\_arg}** – Optional arguments are covered by these keyword arguments. If present, they are described in the section Other Parameters.

**Attributes**

- $\text{angles}$ numpy.ndarray: Rotation angles (in rad) of the model.
- $\text{anis}$ numpy.ndarray: The anisotropy factors of the model.
- $\text{anis\_bounds}$ list: Bounds for the nugget.
- $\text{arg}$ list of str: Names of all arguments.
- $\text{arg\_bounds}$ dict: Bounds for all parameters.
- $\text{arg\_list}$ list of float: Values of all arguments.
- $\text{dim}$ int: The dimension of the model.
- $\text{dist\_func}$ tuple of callable: pdf, cdf and ppf.
- $\text{do\_rotation}$ bool: State if a rotation is performed.
- $\text{field\_dim}$ int: The field dimension of the model.
- $\text{hankel\_kw}$ dict: $\text{hankel.SymmetricFourierTransform}$ kwargs.
- $\text{has\_cdf}$ bool: State if a cdf is defined by the user.
- $\text{has\_ppf}$ bool: State if a ppf is defined by the user.
- $\text{integral\_scale}$ float: The main integral scale of the model.
- $\text{integral\_scale\_vec}$ numpy.ndarray: The integral scales in each direction.
- $\text{is\_isotropic}$ bool: State if a model is isotropic.
- $\text{iso\_arg}$ list of str: Names of isotropic arguments.
- $\text{iso\_arg\_list}$ list of float: Values of isotropic arguments.
- $\text{lat\_lon}$ bool: Whether the model depends on geographical coords.
- $\text{len\_rescaled}$ float: The rescaled main length scale of the model.
- $\text{len\_scale}$ float: The main length scale of the model.
- $\text{len\_scale\_bounds}$ list: Bounds for the length scale.
- $\text{len\_scale\_vec}$ numpy.ndarray: The length scales in each direction.
- $\text{name}$ str: The name of the CovModel class.
- $\text{nugget}$ float: The nugget of the model.
- $\text{nugget\_bounds}$ list: Bounds for the nugget.
- $\text{opt\_arg}$ list of str: Names of the optional arguments.
**opt_arg_bounds** dict: Bounds for the optional arguments.

**pykrige_angle** 2D rotation angle for pykrige.

**pykrige_angle_x** 3D rotation angle around x for pykrige.

**pykrige_angle_y** 3D rotation angle around y for pykrige.

**pykrige_angle_z** 3D rotation angle around z for pykrige.

**pykrige_anis** 2D anisotropy ratio for pykrige.

**pykrige_anis_y** 3D anisotropy ratio in y direction for pykrige.

**pykrige_anis_z** 3D anisotropy ratio in z direction for pykrige.

**pykrige_kwargs** Keyword arguments for pykrige routines.

**rescale** float: Rescale factor for the length scale of the model.

**sill** float: The sill of the variogram.

**var** float: The variance of the model.

**var_bounds** list: Bounds for the variance.

**var_raw** float: The raw variance of the model without factor.

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anisometrize(pos)</td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td>calc_integral_scale()</td>
<td>Calculate the integral scale of the isotrope model.</td>
</tr>
<tr>
<td>check_arg_bounds()</td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td>check_dim(dim)</td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td>check_opt_arg()</td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td>cor(h)</td>
<td>Exponential normalized correlation function.</td>
</tr>
<tr>
<td>cor_axis(r[, axis])</td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td>cor_spatial(pos)</td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cor_yadrenko(zeta)</td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>correlation(r)</td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td>cov_axis(r[, axis])</td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td>cov_nugget(r)</td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td>cov_spatial(pos)</td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cov_yadrenko(zeta)</td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>covariance(r)</td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td>default_arg_bounds()</td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td>default_opt_arg()</td>
<td>Provide default optional arguments by the user.</td>
</tr>
<tr>
<td>default_opt_arg_bounds()</td>
<td>Provide default boundaries for optional arguments.</td>
</tr>
<tr>
<td>default_rescale()</td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td>fit_variogram(x_data, y_data[, anis, sill, ...])</td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td>fix_dim()</td>
<td>Set a fix dimension for the model.</td>
</tr>
<tr>
<td>isometrize(pos)</td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td>ln_spectral_rad_pdf(r)</td>
<td>Log radial spectral density of the model.</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>main_axes()</code></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><code>percentile_scale([per])</code></td>
<td>Calculate the percentile scale of the isotropic model.</td>
</tr>
<tr>
<td><code>plot([func])</code></td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td><code>pykrige_vario([args, r])</code></td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td><code>set_arg_bounds([check_args])</code></td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td><code>spectral_density(k)</code></td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td><code>spectral_rad_cdf(r)</code></td>
<td>Exponential radial spectral cdf.</td>
</tr>
<tr>
<td><code>spectral_rad_pdf(r)</code></td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td><code>spectral_rad_ppf(u)</code></td>
<td>Exponential radial spectral ppf.</td>
</tr>
<tr>
<td><code>spectrum(k)</code></td>
<td>Spectrum of the covariance model.</td>
</tr>
<tr>
<td><code>var_factor()</code></td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td><code>vario_axis(r[, axis])</code></td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td><code>vario_nugget(r)</code></td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>vario_spatial(pos)</code></td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>vario_yadrenko(zeta)</code></td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>varioogram(r)</code></td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

### Notes

- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

### Methods

- `anisometrize(pos)`
  Bring a position tuple into the anisotropic coordinate-system.
- `calc_integral_scale()`
  Calculate the integral scale of the isotropic model.
- `check_arg_bounds()`
  Check arguments to be within their given bounds.
- `check_dim(dim)`
  Check the given dimension.
- `check_opt_arg()`
  Run checks for the optional arguments.
  This is in addition to the bound-checks

### Correlation Methods

- `cor(h)`
  Exponential normalized correlation function.
- `cor_axis(r, axis=0)`
  Correlation along axis of anisotropy.
- `cor_spatial(pos)`
  Spatial correlation respecting anisotropy and rotation.
- `cor_yadrenko(zeta)`
  Yadrenko correlation for great-circle distance from latlon-pos.
- `correlation(r)`
  Correlation function of the model.
**cov_axis**(r, axis=0)
Covariance along axis of anisotropy.

**cov_nugget**(r)
Isotropic covariance of the model respecting the nugget at r=0.

**cov_spatial**(pos)
Spatial covariance respecting anisotropy and rotation.

**cov_yadrenko**(zeta)
Yadrenko covariance for great-circle distance from latlon-pos.

**covariance**(r)
Covariance of the model.

**default_arg_bounds()**
Provide default boundaries for arguments.
Given as a dictionary.

**default_opt_arg()**
Provide default optional arguments by the user.
Should be given as a dictionary when overridden.

**default_opt_arg_bounds()**
Provide default boundaries for optional arguments.

**default_rescale()**
Provide default rescaling factor.

**fit_variogram**(x_data, y_data, anis=True, sill=None, init_guess='default', weights=None,
method='trf', loss='soft_l1', max_eval=None, return_r2=False,
curve_fit_kwargs=None, **para_select)**
Fitting the variogram-model to an empirical variogram.

**Parameters**

- **x_data** *(numpy.ndarray)* – The bin-centers of the empirical variogram.
- **y_data** *(numpy.ndarray)* – The measured variogram. If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.
- **anis** *(bool, optional)* – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios won’t be altered during fitting. Default: True
- **sill** *(float or bool, optional)* – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:
  - sill = var + nugget
  - if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.

  If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None
- **init_guess** *(str or dict, optional)* – Initial guess for the estimation. Either:
  - ”default”: using the default values of the covariance model (“len_scale” will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))
  - ”current”: using the current values of the covariance model
- dict: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above (“default” by default)) Example: 
  
  ```json
 {"len_scale": 10, "default": "current"}
  ```

  Default: “default”

• `weights (str, numpy.ndarray, callable, optional) – Weights applied to each point in the estimation. Either:
  - 'inv': inverse distance \(1 / (x_{data} + 1)\)
  - list: weights given per bin
  - callable: function applied to \(x_{data}\)

  If callable, it must take a 1-d ndarray. Then \(weights = f(x_{data})\). Default: None

• `method ({'trf', 'dogbox'}, optional) – Algorithm to perform minimization.
  - 'trf': Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - 'dogbox': dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

  Default: ‘trf’

• `loss (str or callable, optional) – Determines the loss function in scipys `curve_fit`. The following keyword values are allowed:
  - 'linear' (default): \(\rho(z) = z\). Gives a standard least-squares problem.
  - 'soft_l1': \(\rho(z) = 2 + ((1 + z)**0.5 - 1)\). The smooth approximation of \(L1\) (absolute value) loss. Usually a good choice for robust least squares.
  - 'huber': \(\rho(z) = z \text{ if } z \leq 1 \text{ else } 2*z**0.5 - 1\). Works similarly to ‘soft_l1’.
  - 'cauchy': \(\rho(z) = \ln(1 + z)\). Severely weakens outliers influence, but may cause difficulties in optimization process.
  - 'arctan': \(\rho(z) = \arctan(z)\). Limits a maximum loss on a single residual, has properties similar to ‘cauchy’.

  If callable, it must take a 1-d ndarray \(z=f**2\) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_l1’

• `max_eval (int or None, optional) – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

• `return_r2 (bool, optional) – Whether to return the r2 score of the estimation.

  Default: False

• `curve_fit_kwargs (dict, optional) – Other keyword arguments passed to scipys `curve_fit`. Default: None

• `**para_select – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters won’t be fitted. By default, all parameters are fitted.

**Returns**

• `fit_para (dict) – Dictionary with the fitted parameter values`
• **pcov** (numpy.ndarray) – The estimated covariance of `popt` from `scipy.optimize.curve_fit`. To compute one standard deviation errors on the parameters use `perr = np.sqrt(np.diag(pcov))`.

• **r2_score** (float, optional) – r² score of the curve fitting results. Only if `return_r2` is True.

---

**Notes**

You can set the bounds for each parameter by accessing `CovModel.set_arg_bounds`. The fitted parameters will be instantly set in the model.

---

**fix_dim()**

Set a fix dimension for the model.

**isometrize**(pos)

Make a position tuple ready for isotropic operations.

**ln_spectral_rad_pdf**(r)

Log radial spectral density of the model.

**main_axes()**

Axes of the rotated coordinate-system.

**percentile_scale**(per=0.9)

Calculate the percentile scale of the isotrope model.

This is the distance, where the given percentile of the variance is reached by the variogram

**plot**(func='variogram', **kwargs)

Plot a function of a the CovModel.

**Parameters**

• **func** (str, optional) – Function to be plotted. Could be one of:
  - "variogram"
  - "covariance"
  - "correlation"
  - "vario.spatial"  
  - "cov.spatial"
  - "cor.spatial"
  - "vario.yadrenko"
  - "cov.yadrenko"
  - "cor.yadrenko"
  - "vario.axis"
  - "cov.axis"
  - "cor.axis"
  - "spectrum"
  - "spectral_density"
  - "spectral_rad_pdf"

• **kwargs** – Keyword arguments forwarded to the plotting function “plot_” + func in `gstools.covmodel.plot`.

---

3.6. **gstools.covmodel** 151
See also:

\texttt{gstools.covmodel.plot}

**pykrige_vario** (args=None, r=0)
Isotropic variogram of the model for pykrige.

**set_arg_bounds** (check_args=True, **kwargs)
Set bounds for the parameters of the model.

\textbf{Parameters}

- **check_args**(bool, optional) – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True

- ****kwargs – Parameter name as keyword ("var", "len_scale", "nugget", <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**spectral_density** \((k)\)
Spectral density of the covariance model.

This is given by:

\[
\tilde{S}(k) = \frac{S(k)}{\sigma^2}
\]

Where \(S(k)\) is the spectrum of the covariance model.

\textbf{Parameters} \(k\) (float) – Radius of the phase: \(k = ||k||\)

**spectral_rad_cdf** \((r)\)
Exponential radial spectral cdf.

**spectral_rad_pdf** \((r)\)
Radial spectral density of the model.

**spectral_rad_ppf** \((u)\)
Exponential radial spectral ppf.

\textbf{Notes}

Not defined for 3D.

**spectrum** \((k)\)
Spectrum of the covariance model.

This is given by:

\[
S(k) = \left(\frac{1}{2\pi}\right)^n \int C(r)e^{ik \cdot r}d^n r
\]

Internally, this is calculated by the hankel transformation:

\[
S(k) = \left(\frac{1}{2\pi}\right)^n \frac{(2\pi)^{n/2}}{k^{n/2-1}} \int_0^{\infty} r^{n/2}C(r)J_{n/2-1}(kr)dr
\]

Where \(C(r)\) is the covariance function of the model.

\textbf{Parameters} \(k\) (float) – Radius of the phase: \(k = ||k||\)

**var_factor** ()
Factor for the variance.

**vario_axis** \((r, axis=0)\)
Variogram along axis of anisotropy.
\textbf{vario\_nugget}(r)
Isotropic variogram of the model respecting the nugget at r=0.

\textbf{vario\_spatial}(pos)
Spatial variogram respecting anisotropy and rotation.

\textbf{vario\_yadrenko}(\textit{zeta})
Yadrenko variogram for great-circle distance from latlon-pos.

\textbf{variogram}(r)
Isotropic variogram of the model.

\textbf{property angles}
Rotation angles (in rad) of the model.

\textbf{Type } numpy.ndarray

\textbf{property anis}
The anisotropy factors of the model.

\textbf{Type } numpy.ndarray

\textbf{property anis\_bounds}
Bounds for the nugget.

\textbf{Notes}
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

\textbf{Type } list

\textbf{property arg}
Names of all arguments.

\textbf{Type } list of str

\textbf{property arg\_bounds}
Bounds for all parameters.

\textbf{Notes}
Keys are the arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

\textbf{Type } dict

\textbf{property arg\_list}
Values of all arguments.

\textbf{Type } list of float

\textbf{property dim}
The dimension of the model.

\textbf{Type } int

\textbf{property dist\_func}
Spectral distribution info from the model.

\textbf{Type } tuple of callable
property do_rotation
  State if a rotation is performed.
  Type bool

property field_dim
  The field dimension of the model.
  Type int

property hankel_kw
  hankel.SymmetricFourierTransform kwarg.
  Type dict

property has_cdf
  State if a cdf is defined by the user.
  Type bool

property has_ppf
  State if a ppf is defined by the user.
  Type bool

property integral_scale
  The main integral scale of the model.
  Raises ValueError – If integral scale is not setable.
  Type float

property integral_scale_vec
  The integral scales in each direction.

Notes
This is calculated by:

- integral_scale_vec[0] = integral_scale
- integral_scale_vec[1] = integral_scale*anis[0]

Type numpy.ndarray

property is_isotropic
  State if a model is isotropic.
  Type bool

property iso_arg
  Names of isotropic arguments.
  Type list of str

property iso_arg_list
  Values of isotropic arguments.
  Type list of float

property latlon
  Whether the model depends on geographical coords.
  Type bool

property len_rescaled
  The rescaled main length scale of the model.
Type float

**property len_scale**
The main length scale of the model.

Type float

**property len_scale_bounds**
Bounds for the length scale.

Notes
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type list

**property len_scale_vec**
The length scales in each direction.

Notes
This is calculated by:

- len_scale_vec[0] = len_scale
- len_scale_vec[1] = len_scale*anis[0]

Type numpy.ndarray

**property name**
The name of the CovModel class.

Type str

**property nugget**
The nugget of the model.

Type float

**property nugget_bounds**
Bounds for the nugget.

Notes
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type list

**property opt_arg**
Names of the optional arguments.

Type list of str

**property opt_arg_bounds**
Bounds for the optional arguments.

Notes
Keys are the opt-arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** dict

**property** pykrige_angle
2D rotation angle for pykrige.

**property** pykrige_angle_x
3D rotation angle around x for pykrige.

**property** pykrige_angle_y
3D rotation angle around y for pykrige.

**property** pykrige_angle_z
3D rotation angle around z for pykrige.

**property** pykrige_anis
2D anisotropy ratio for pykrige.

**property** pykrige_anis_y
3D anisotropy ratio in y direction for pykrige.

**property** pykrige_anis_z
3D anisotropy ratio in z direction for pykrige.

**property** pykrige_kwargs
Keyword arguments for pykrige routines.

**property** rescale
Rescale factor for the length scale of the model.

**Type** float

**property** sill
The sill of the variogram.

**Notes**

This is calculated by:

\[
\text{sill} = \text{variance} + \text{nugget}
\]

**Type** float

**property** var
The variance of the model.

**Type** float

**property** var_bounds
Bounds for the variance.

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list
property var_raw
    The raw variance of the model without factor.
    (See. CovModel.var_factor)
    Type float
class gstools.covmodel.Matern

Bases: gstools.covmodel.base.CovModel

The Matérn covariance model.

Notes

This model is given by the following correlation function [Rasmussen2003]:

\[
\rho(r) = \frac{2^{1-\nu}}{\Gamma(\nu)} \left( \sqrt{\nu} \cdot s \cdot \frac{r}{\ell} \right)^\nu \cdot K_\nu \left( \sqrt{\nu} \cdot s \cdot \frac{r}{\ell} \right)
\]

Where the standard rescale factor is \( s = 1 \). \( \Gamma \) is the gamma function and \( K_\nu \) is the modified Bessel function of the second kind.

\( \nu \) is a shape parameter and should be \( \geq 0.2 \).

If \( \nu > 20 \), a gaussian model is used, since it represents the limiting case:

\[
\rho(r) = \exp \left( - \left( s \cdot \frac{r}{2\ell} \right)^2 \right)
\]

References

Other Parameters nu (float, optional) – Shape parameter. Standard range: [0.2, 30]
  Default: 1.0

Parameters

- **dim** (int, optional) – dimension of the model. Default: 3
- **var** (float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- **len_scale** (float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, anis will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- **nugget** (float, optional) – nugget of the model. Default: 0.0
- **anis** (float or list, optional) – anisotropy ratios in the transversal directions [e_y, e_z].
  - e_y = l_y / l_x
  - e_z = l_z / l_x
  If only one value is given in 3D, e_y will be set to 1. This value will be ignored, if multiple len_scales are given. Default: 1.0
- **angles** (float or list, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)
  Default: 0.0
- **integral_scale** *(float or list or None, optional)* – If given, `len_scale` will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None

- **rescale** *(float or None, optional)* – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None

- **latlon** *(bool, optional)* – Whether the model is describing 2D fields on earth’s surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance \( r \) will be replaced by \( 2 \sin(\alpha/2) \), where \( \alpha \) is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, \( dim \) will be set to 3 and anisotropy will be disabled. `rescale` can be set to e.g. earth’s radius, to have a meaningful `len_scale` parameter. Default: False

- **var_raw** *(float or None, optional)* – raw variance of the model which will be multiplied with `CovModel.var_factor` to result in the actual variance. If given, `var` will be ignored. (This is just for models that override `CovModel.var_factor`) Default: None

- **hankel_kw** *(dict or None, optional)* – Modify the init-arguments of `hankel.SymmetricFourierTransform` used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to \{"a": -1, "b": 1, "N": 1000, "h": 0.001\}. Default: None

- ****opt_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section *Other Parameters.*

**Attributes**

- `angles` *numpy.ndarray*: Rotation angles (in rad) of the model.
- `anis` *numpy.ndarray*: The anisotropy factors of the model.
- `anis_bounds` *list*: Bounds for the nugget.
- `arg` *list of str*: Names of all arguments.
- `arg_bounds` *dict*: Bounds for all parameters.
- `arg_list` *list of float*: Values of all arguments.
- `dim` *int*: The dimension of the model.
- `dist_func` *tuple of callable*: pdf, cdf and ppf.
- `do_rotation` *bool*: State if a rotation is performed.
- `field_dim` *int*: The field dimension of the model.
- `hankel_kw` *dict*: `hankel.SymmetricFourierTransform` kwargs.
- `has_cdf` *bool*: State if a cdf is defined by the user.
- `has_ppf` *bool*: State if a ppf is defined by the user.
- `integral_scale` *float*: The main integral scale of the model.
- `integral_scale_vec` *numpy.ndarray*: The integral scales in each direction.
- `is_isotropic` *bool*: State if a model is isotropic.
- `iso_arg` *list of str*: Names of isotropic arguments.
- `iso_arg_list` *list of float*: Values of isotropic arguments.
- `latlon` *bool*: Whether the model depends on geographical coords.
- `len_rescaled` *float*: The rescaled main length scale of the model.
len_scale float: The main length scale of the model.
len_scale_bounds list: Bounds for the length scale.
len_scale_vec numpy.ndarray: The length scales in each direction.
name str: The name of the CovModel class.
nugget float: The nugget of the model.
nugget_bounds list: Bounds for the nugget.
opt_arg list of str: Names of the optional arguments.
opt_arg_bounds dict: Bounds for the optional arguments.
pykrige_angle 2D rotation angle for pykrige.
pykrige_angle_x 3D rotation angle around x for pykrige.
pykrige_angle_y 3D rotation angle around y for pykrige.
pykrige_angle_z 3D rotation angle around z for pykrige.
pykrige_anis 2D anisotropy ratio for pykrige.
pykrige_anis_y 3D anisotropy ratio in y direction for pykrige.
pykrige_anis_z 3D anisotropy ratio in z direction for pykrige.
pykrige_kwargs Keyword arguments for pykrige routines.
rescale float: Rescale factor for the length scale of the model.
sill float: The sill of the variogram.
var float: The variance of the model.
var_bounds list: Bounds for the variance.
var_raw float: The raw variance of the model without factor.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anisometrize(pos)</td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td>calc_integral_scale()</td>
<td>Calculate the integral scale of the isotrope model.</td>
</tr>
<tr>
<td>check_arg_bounds()</td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td>check_dim(dim)</td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td>check_opt_arg()</td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td>cor(h)</td>
<td>Matérn normalized correlation function.</td>
</tr>
<tr>
<td>cor_axis(r[, axis])</td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td>cor_spatial(pos)</td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cor_yadrenko(zeta)</td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>correlation(r)</td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td>cov_axis(r[, axis])</td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td>cov_nugget(r)</td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td>cov_spatial(pos)</td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cov_yadrenko(zeta)</td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>covariance(r)</td>
<td>Covariance of the model.</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default_arg_bounds()</td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td>default_opt_arg()</td>
<td>Defaults for the optional arguments.</td>
</tr>
<tr>
<td>default_opt_arg_bounds()</td>
<td>Defaults for boundaries of the optional arguments.</td>
</tr>
<tr>
<td>default_rescale()</td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td>fit_variogram(x_data, y_data[, anis, sill, ...])</td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td>fix_dim()</td>
<td>Set a fix dimension for the model.</td>
</tr>
<tr>
<td>isometrize(pos)</td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td>ln_spectral_rad_pdf(r)</td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td>main_axes()</td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td>percentile_scale([per])</td>
<td>Calculate the percentile scale of the isotropic model.</td>
</tr>
<tr>
<td>plot([func])</td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td>pykrige_vario([args, r])</td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td>set_arg_bounds([check_args])</td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td>spectral_density(k)</td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td>spectral_rad_pdf(r)</td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td>spectrum(k)</td>
<td>Spectrum of the covariance model.</td>
</tr>
<tr>
<td>var_factor()</td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td>vario_axis(r[, axis])</td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td>vario_nugget(r)</td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td>vario_spatial(pos)</td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>vario_yadrenko(zeta)</td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>variogram(r)</td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

**Notes**

- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

**cor** \((h)\)
Matérn normalized correlation function.

**cor_axis** \((r, axis=0)\)
Correlation along axis of anisotropy.
cor_spatial (pos)
Spatial correlation respecting anisotropy and rotation.

cor_yadrenko (zeta)
Yadrenko correlation for great-circle distance from latlon-pos.

correlation (r)
Correlation function of the model.

cov_axis (r, axis=0)
Covariance along axis of anisotropy.

cov_nugget (r)
Isotropic covariance of the model respecting the nugget at r=0.

cov_spatial (pos)
Spatial covariance respecting anisotropy and rotation.

cov_yadrenko (zeta)
Yadrenko covariance for great-circle distance from latlon-pos.

covariance (r)
Covariance of the model.

default_arg_bounds ()
Provide default boundaries for arguments.
Given as a dictionary.

default_opt_arg ()
Defaults for the optional arguments.

  * {"nu": 1.0}

  Returns  Defaults for optional arguments
  
  Return type  dict

default_opt_arg_bounds ()
Defaults for boundaries of the optional arguments.

  * {"nu": [0.2, 30.0, "cc"]}

  Returns  Boundaries for optional arguments
  
  Return type  dict

default_rescale ()
Provide default rescaling factor.

fit_variogram (x_data, y_data, anis=True, sill=None, init_guess='default', weights=None, method='trf', loss='soft_l1', max_eval=None, return_r2=False, curve_fit_kwars=None, **para_select)
Fitting the variogram-model to an empirical variogram.

Parameters

  * x_data (numpy.ndarray) – The bin-centers of the empirical variogram.

  * y_data (numpy.ndarray) – The measured variogram If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.

  * anis (bool, optional) – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios wont be altered during fitting. Default: True
- **sill (float or bool, optional)** – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:
  - sill = var + nugget
  - if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.

  If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None

- **init_guess (str or dict, optional)** – Initial guess for the estimation. Either:
  - ”default”: using the default values of the covariance model (“len_scale” will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))
  - ”current”: using the current values of the covariance model
  - dict: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above (“default” by default)) Example: {"len_scale": 10, "default": "current"}

  Default: “default”

- **weights (str, numpy.ndarray, callable, optional)** – Weights applied to each point in the estimation. Either:
  - ’inv’: inverse distance 1 / (x_data + 1)
  - list: weights given per bin
  - callable: function applied to x_data

  If callable, it must take a 1-d ndarray. Then weights = f(x_data). Default: None

- **method ({'trf', 'dogbox'}, optional)** – Algorithm to perform minimization.
  - ‘trf’: Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - ‘dogbox’: dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

  Default: ‘trf’

- **loss (str or callable, optional)** – Determines the loss function in scipy curve_fit. The following keyword values are allowed:
  - ’soft_l1': rho(z) = 2 * ((1 + z)**0.5 - 1). The smooth approximation of l1 (absolute value) loss. Usually a good choice for robust least squares.
  - ’huber’ : rho(z) = z if z <= 1 else 2*z**0.5 - 1. Works similarly to ’soft_l1’.
  - ’cauchy’ : rho(z) = ln(1 + z). Severely weakens outliers influence, but may cause difficulties in optimization process.
  - ’arctan’ : rho(z) = arctan(z). Limits a maximum loss on a single residual, has properties similar to ’cauchy’. 
If callable, it must take a 1-d ndarray \( z = f \) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_l1’

- **max_eval** *(int or None, optional)* – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: \( 100 \times n \).
- **return_r2** *(bool, optional)* – Whether to return the r2 score of the estimation. Default: False
- **curve_fit_kwargs** *(dict, optional)* – Other keyword arguments passed to scipy’s curve_fit. Default: None
- ****para_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters won’t be fitted. By default, all parameters are fitted.

Returns

- **fit_params** *(dict)* – Dictionary with the fitted parameter values
- **pcov** *(numpy.ndarray)* – The estimated covariance of \( popt \) from scipy.optimize.curve_fit. To compute one standard deviation errors on the parameters use \( \text{perr} = \sqrt{\text{np.diag}(\text{pcov})} \).
- **r2_score** *(float, optional)* – r2 score of the curve fitting results. Only if return_r2 is True.

Notes

You can set the bounds for each parameter by accessing `CovModel.set_arg_bounds`. The fitted parameters will be instantly set in the model.

**fix_dim**()

Set a fix dimension for the model.

**isometrize** *(pos)*

Make a position tuple ready for isotropic operations.

**ln_spectral_rad_pdf** *(r)*

Log radial spectral density of the model.

**main_axes**()

Axes of the rotated coordinate-system.

**percentile_scale** *(per=0.9)*

Calculate the percentile scale of the isotrope model.

This is the distance, where the given percentile of the variance is reached by the variogram

**plot** *(func='variogram', **kwargs)*

Plot a function of a the CovModel.

Parameters

- **func** *(str, optional)* – Function to be plotted. Could be one of:
  - ”variogram”
  - ”covariance”
  - ”correlation”
  - ”vario_spatial”
  - ”cov_spatial”
GeoStatTools Documentation, Release 1.3.4

- "cor_spatial"
- "vario_yadrenko"
- "cov_yadrenko"
- "cor_yadrenko"
- "vario_axis"
- "cov_axis"
- "cor_axis"
- "spectrum"
- "spectral_density"
- "spectral_rad_pdf"

**kwargs – Keyword arguments forwarded to the plotting function “plot_” + func in gstools.covmodel.plot.

See also:
gstools.covmodel.plot

pykrige.vario(args=None, r=0)
   Isotropic variogram of the model for pykrige.

set_arg_bounds(check_args=True, **kwargs)
   Set bounds for the parameters of the model.

Parameters

- check_args(bool, optional) – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True
- **kwargs – Parameter name as keyword ("var", "len_scale", "nugget", <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

spectral_density(k)
   Spectral density of the covariance model.

This is given by:

\[ \tilde{S}(k) = \frac{S(k)}{\sigma^2} \]

Where \( S(k) \) is the spectrum of the covariance model.

Parameters k (float) – Radius of the phase: \( k = ||k|| \)

spectral_rad_pdf(r)
   Radial spectral density of the model.

spectrum(k)
   Spectrum of the covariance model.

This is given by:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \int C(r)e^{ik\cdot r}d^n r \]

Internally, this is calculated by the hankel transformation:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \cdot \left( \frac{2\pi}{k(n/2-1)} \right)^{n/2} \int_0^\infty r^{n/2}C(r)J_{n/2-1}(kr)dr \]

Where \( C(r) \) is the covariance function of the model.
Parameters $k$ (float) – Radius of the phase: $k = ||k||$

var_factor()
Factor for the variance.

vario_axis($r$, axis=0)
Variogram along axis of anisotropy.

vario_nugget($r$)
Isotropic variogram of the model respecting the nugget at r=0.

vario_spatial($pos$)
Spatial variogram respecting anisotropy and rotation.

vario_yadrenko($zeta$)
Yadrenko variogram for great-circle distance from latlon-pos.

variogram($r$)
Isotropic variogram of the model.

property angles
Rotation angles (in rad) of the model.
Type numpy.ndarray

property anis
The anisotropy factors of the model.
Type numpy.ndarray

property anis_bounds
Bounds for the nugget.
Type list

Notes
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

property arg
Names of all arguments.
Type list of str

property arg_bounds
Bounds for all parameters.

Notes
Keys are the arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type dict

property arg_list
Values of all arguments.
Type list of float

property dim
The dimension of the model.
Type int
property dist_func
df, cdf and ppf.
Spectral distribution info from the model.
    Type tuple of callable

property do_rotation
State if a rotation is performed.
    Type bool

property field_dim
The field dimension of the model.
    Type int

property hankel_kw
    hankel.SymmetricFourierTransform kwarg.
    Type dict

property has_cdf
State if a cdf is defined by the user.
    Type bool

property has_ppf
State if a ppf is defined by the user.
    Type bool

property integral_scale
The main integral scale of the model.
    Raises ValueError – If integral scale is not setable.
    Type float

property integral_scale_vec
The integral scales in each direction.

Notes
This is calculated by:

- integral_scale_vec[0] = integral_scale
- integral_scale_vec[1] = integral_scale*anis[0]

    Type numpy.ndarray

property is_isotropic
State if a model is isotropic.
    Type bool

property iso_arg
Names of isotropic arguments.
    Type list of str

property iso_arg_list
Values of isotropic arguments.
    Type list of float
**property latlon**
Whether the model depends on geographical coords.

*Type* `bool`

**property len_rescaled**
The rescaled main length scale of the model.

*Type* `float`

**property len_scale**
The main length scale of the model.

*Type* `float`

**property len_scale_bounds**
Bounds for the length scale.

*Notes*
Is a list of 2 or 3 values: `[a, b]` or `[a, b, <type>]` where `<type>` is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

*Type* `list`

**property len_scale_vec**
The length scales in each direction.

*Notes*
This is calculated by:

- `len_scale_vec[0] = len_scale`
- `len_scale_vec[1] = len_scale*anis[0]`

*Type* `numpy.ndarray`

**property name**
The name of the CovModel class.

*Type* `str`

**property nugget**
The nugget of the model.

*Type* `float`

**property nugget_bounds**
Bounds for the nugget.

*Notes*
Is a list of 2 or 3 values: `[a, b]` or `[a, b, <type>]` where `<type>` is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

*Type* `list`

**property opt_arg**
Names of the optional arguments.
**property opt_arg_bounds**

Bounds for the optional arguments.

**Notes**

Keys are the opt-arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** `dict`

**property pykrige_angle**

2D rotation angle for pykrige.

**property pykrige_angle_x**

3D rotation angle around x for pykrige.

**property pykrige_angle_y**

3D rotation angle around y for pykrige.

**property pykrige_angle_z**

3D rotation angle around z for pykrige.

**property pykrige_anis**

2D anisotropy ratio for pykrige.

**property pykrige_anis_y**

3D anisotropy ratio in y direction for pykrige.

**property pykrige_anis_z**

3D anisotropy ratio in z direction for pykrige.

**property pykrige_kwargs**

Keyword arguments for pykrige routines.

**property rescale**

Rescale factor for the length scale of the model.

**Type** `float`

**property sill**

The sill of the variogram.

**Notes**

This is calculated by:

```
* sill = variance + nugget
```

**Type** `float`

**property var**

The variance of the model.

**Type** `float`

**property var_bounds**

Bounds for the variance.

**Notes**
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list

**property var_raw**
The raw variance of the model without factor.
(See, CovModel.var_factor)

**Type** float
gstools.covmodel.Stable

**class gstools.covmodel.Stable**

```python
dim=3, var=1.0, len_scale=1.0, nugget=0.0, anis=1.0, angles=0.0, integral_scale=None, rescale=None, latlon=False, var_raw=None, hankel_kw=None, **opt_arg)
```

Bases: gstools.covmodel.base.CovModel

The stable covariance model.

**Notes**

This model is given by the following correlation function \[Wackernagel2003\]:

\[
\rho(r) = \exp \left( -\left( s \cdot \frac{r}{\ell} \right)^\alpha \right)
\]

Where the standard rescale factor is \( s = 1 \). \( \alpha \) is a shape parameter with \( \alpha \in (0, 2) \)

**References**

- **Other Parameters**

  **alpha** *(float, optional)* – Shape parameter. Standard range: \( (0, 2) \)

  Default: 1.5

**Parameters**

- **dim** *(int, optional)* – dimension of the model. Default: 3

- **var** *(float, optional)* – variance of the model (the nugget is not included in “this” variance) Default: 1.0

- **len_scale** *(float or list, optional)* – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, \( \text{anis} \) will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions.

  Default: 1.0

- **nugget** *(float, optional)* – nugget of the model. Default: 0.0

- **anis** *(float or list, optional)* – anisotropy ratios in the transversal directions \([e_y, e_z]\).

  - \( e_y = l_y / l_x \)
  - \( e_z = l_z / l_x \)

  If only one value is given in 3D, \( e_y \) will be set to 1. This value will be ignored, if multiple \( \text{len}\_\text{scale} \)s are given. Default: 1.0

- **angles** *(float or list, optional)* – angles of rotation (given in rad):

  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)

  Default: 0.0

- **integral_scale** *(float or list or None, optional)* – If given, \( \text{len}\_\text{scale} \) will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None

- **rescale** *(float or None, optional)* – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None
• **latlon** (bool, optional) – Whether the model is describing 2D fields on earth's surface described by latitude and longitude. When using this, the model will internally use the associated 'Yadrenko' model to represent a valid model. This means, the spatial distance $r$ will be replaced by $2 \sin(\alpha/2)$, where $\alpha$ is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, `dim` will be set to 3 and anisotropy will be disabled. `rescale` can be set to e.g. earth's radius, to have a meaningful `len_scale` parameter. Default: False

• **var_raw** (float or None, optional) – raw variance of the model which will be multiplied with `CovModel.var_factor` to result in the actual variance. If given, `var` will be ignored. (This is just for models that override `CovModel.var_factor`) Default: None

• **hankel_kw** (dict or None, optional) – Modify the init-arguments of `hankel.SymmetricFourierTransform` used for the spectrum calculation. Use with caution (Better: Don't!). None is equivalent to `{"a": -1, "b": 1, "N": 1000, "h": 0.001}`. Default: None

• **opt_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section Other Parameters.

Attributes

```
angles numpy.ndarray: Rotation angles (in rad) of the model.
anis numpy.ndarray: The anisotropy factors of the model.
anis_bounds list: Bounds for the nugget.
arg list of str: Names of all arguments.
arg_bounds dict: Bounds for all parameters.
arg_list list of float: Values of all arguments.
dim int: The dimension of the model.
dist_func tuple of callable: pdf, cdf and ppf.
do_rotation bool: State if a rotation is performed.
field_dim int: The field dimension of the model.
hankel_kw dict: hankel.SymmetricFourierTransform kwargs.
has_cdf bool: State if a cdf is defined by the user.
has_ppf bool: State if a ppf is defined by the user.
integral_scale float: The main integral scale of the model.
integral_scale_vec numpy.ndarray: The integral scales in each direction.
is_isotropic bool: State if a model is isotropic.
iso_arg list of str: Names of isotropic arguments.
iso_arg_list list of float: Values of isotropic arguments.
latlon bool: Whether the model depends on geographical coords.
len_rescaled float: The rescaled main length scale of the model.
len_scale float: The main length scale of the model.
len_scale_bounds list: Bounds for the length scale.
len_scale_vec numpy.ndarray: The length scales in each direction.
name str: The name of the CovModel class.
nugget float: The nugget of the model.
```
**nugget_bounds** list: Bounds for the nugget.

**opt_arg** list of str: Names of the optional arguments.

**opt_arg_bounds** dict: Bounds for the optional arguments.

**pykrige_angle** 2D rotation angle for pykrige.

**pykrige_angle_x** 3D rotation angle around x for pykrige.

**pykrige_angle_y** 3D rotation angle around y for pykrige.

**pykrige_angle_z** 3D rotation angle around z for pykrige.

**pykrige_anis** 2D anisotropy ratio for pykrige.

**pykrige_anis_y** 3D anisotropy ratio in y direction for pykrige.

**pykrige_anis_z** 3D anisotropy ratio in z direction for pykrige.

**pykrige_kwargs** Keyword arguments for pykrige routines.

**rescale** float: Rescale factor for the length scale of the model.

**sill** float: The sill of the variogram.

**var** float: The variance of the model.

**var_bounds** list: Bounds for the variance.

**var_raw** float: The raw variance of the model without factor.

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anisometrize(pos)</td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td>calc_integral_scale()</td>
<td>Calculate the integral scale of the isotropic model.</td>
</tr>
<tr>
<td>check_arg_bounds()</td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td>check_dim(dim)</td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td>check_opt_arg()</td>
<td>Check the optional arguments.</td>
</tr>
<tr>
<td>cor(h)</td>
<td>Stable normalized correlation function.</td>
</tr>
<tr>
<td>cor_axis(r[, axis])</td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td>cor_spatial(pos)</td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cor_yadrenko(zeta)</td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>correlation(r)</td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td>cov_axis(r[, axis])</td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td>cov_nugget(r)</td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td>cov_spatial(pos)</td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cov_yadrenko(zeta)</td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>covariance(r)</td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td>default_arg_bounds()</td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td>default_opt_arg()</td>
<td>Defaults for the optional arguments.</td>
</tr>
<tr>
<td>default_opt_arg_bounds()</td>
<td>Defaults for boundaries of the optional arguments.</td>
</tr>
<tr>
<td>default_rescale()</td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td>fit_variogram(x_data, y_data[, anis, sill, ...])</td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td>fix_dim()</td>
<td>Set a fix dimension for the model.</td>
</tr>
</tbody>
</table>

continues on next page
### Table 18 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>isometrize(pos)</code></td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td><code>ln_spectral_rad_pdf(r)</code></td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td><code>main_axes()</code></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><code>percentile_scale([per])</code></td>
<td>Calculate the percentile scale of the isotropic model.</td>
</tr>
<tr>
<td><code>plot([func])</code></td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td><code>pykrige_vario([args, r])</code></td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td><code>set_arg_bounds([check_args])</code></td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td><code>spectral_density(k)</code></td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td><code>spectral_rad_pdf(r)</code></td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td><code>set_var_factor()</code></td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td><code>vario_axis(r[, axis])</code></td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td><code>vario_nugget(r)</code></td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>vario_spatial(pos)</code></td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>vario_yadrenko(zeta)</code></td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>varioogram(r)</code></td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

**Warns alpha**  – If alpha is < 0.3, the model tends to a nugget model and gets numerically unstable.

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>anisometrize(pos)</code></td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td><code>calc_integral_scale()</code></td>
<td>Calculate the integral scale of the isotropic model.</td>
</tr>
<tr>
<td><code>check_arg_bounds()</code></td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td><code>check_dim(dim)</code></td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td><code>check_opt_arg()</code></td>
<td>Check the optional arguments.</td>
</tr>
<tr>
<td><code>cor(h)</code></td>
<td>Stable normalized correlation function.</td>
</tr>
<tr>
<td><code>cor_axis(r, axis=0)</code></td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td><code>cor_spatial(pos)</code></td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>cor_yadrenko(zeta)</code></td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>correlation(r)</code></td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td><code>cov_axis(r, axis=0)</code></td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td><code>cov_nugget(r)</code></td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>cov_spatial(pos)</code></td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
</tbody>
</table>
**cov_yadrenko** *(\(zeta\))*
Yadrenko covariance for great-circle distance from latlon-pos.

**covariance** *(\(r\))*
Covariance of the model.

**default_arg_bounds()**
Provide default boundaries for arguments.
Given as a dictionary.

**default_opt_arg()**
Defaults for the optional arguments.

- {"alpha": 1.5}

**Returns**  Defaults for optional arguments

**Return type**  dict

**default_opt_arg_bounds()**
Defaults for boundaries of the optional arguments.

- {"alpha": [0, 2, "oc"]}

**Returns**  Boundaries for optional arguments

**Return type**  dict

**default_rescale()**
Provide default rescaling factor.

**fit_variogram** *(\(x\_data, y\_data, anis=True, sill=None, init_guess='default', weights=None, method='trf', loss='soft_l1', max_eval=None, return_r2=False, curve_fit_kwargs=None, **para_select)\)*
Fitting the variogram-model to an empirical variogram.

**Parameters**

- **x\_data** *(numpy.ndarray)* – The bin-centers of the empirical variogram.

- **y\_data** *(numpy.ndarray)* – The measured variogram If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.

- **anis** *(bool, optional)* – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios won’t be altered during fitting. Default: True

- **sill** *(float or bool, optional)* – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:

  - sill = var + nugget

  - if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.

  If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None

- **init_guess** *(str or dict, optional)* – Initial guess for the estimation. Either:

  - ”default”: using the default values of the covariance model (“len_scale” will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))
- "current": using the current values of the covariance model
- dict: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above (“default” by default)) Example: {
  "len_scale": 10, "default": "current"
}
Default: “default”

• weights (str, numpy.ndarray, callable, optional) – Weights applied to each point in the estimation. Either:
  - ‘inv’: inverse distance 1 / (x_data + 1)
  - list: weights given per bin
  - callable: function applied to x_data
If callable, it must take a 1-d ndarray. Then weights = f(x_data). Default: None

• method ({'trf', 'dogbox'}, optional) – Algorithm to perform minimization.
  - ‘trf’ : Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - ‘dogbox’ : dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.
Default: ‘trf’

• loss (str or callable, optional) – Determines the loss function in scipy's curve_fit. The following keyword values are allowed:
  - ‘linear’ (default): \( \rho(z) = z \). Gives a standard least-squares problem.
  - ‘soft_l1’: \( \rho(z) = 2 \times ((1 + z)^{0.5} - 1) \). The smooth approximation of l1 (absolute value) loss. Usually a good choice for robust least squares.
  - ‘huber’ : \( \rho(z) = z \) if \( z <= 1 \) else \( 2z^{0.5} - 1 \). Works similarly to ‘soft_l1’.
  - ‘cauchy’ : \( \rho(z) = \ln(1 + z) \). Severely weakens outliers influence, but may cause difficulties in optimization process.
  - ‘arctan’ : \( \rho(z) = \arctan(z) \). Limits a maximum loss on a single residual, has properties similar to ‘cauchy’.
If callable, it must take a 1-d ndarray z=f**2 and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_l1’

• max_eval (int or None, optional) – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

• return_r2 (bool, optional) – Whether to return the r2 score of the estimation. Default: False

• curve_fit_kwargs (dict, optional) – Other keyword arguments passed to scipy's curve_fit. Default: None

• **para_select – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters won't be fitted. By default, all parameters are fitted.

Returns
• **fit_para** *(dict)* – Dictionary with the fitted parameter values

• **pcov** *(numpy.ndarray)* – The estimated covariance of *popt* from *scipy.optimize.curve_fit*. To compute one standard deviation errors on the parameters use \( \text{perr} = \text{np.sqrt}(\text{np.diag}(\text{pcov})) \).

• **r2_score** *(float, optional)* – R² score of the curve fitting results. Only if return_r2 is True.

**Notes**

You can set the bounds for each parameter by accessing *CovModel.set_arg_bounds*. The fitted parameters will be instantly set in the model.

---

**fix_dim()**

Set a fix dimension for the model.

**isometrize**(pos)

Make a position tuple ready for isotropic operations.

**ln_spectral_rad_pdf**(r)

Log radial spectral density of the model.

**main_axes()**

Axes of the rotated coordinate-system.

**percentile_scale**(per=0.9)

Calculate the percentile scale of the isotrope model.

This is the distance, where the given percentile of the variance is reached by the variogram.

**plot**(func='variogram', **kwargs)

Plot a function of a the CovModel.

**Parameters**

• **func** *(str, optional)* – Function to be plotted. Could be one of:
  - "variogram"
  - "covariance"
  - "correlation"
  - "vario_spatial"
  - "cov_spatial"
  - "cor_spatial"
  - "vario_yadrenko"
  - "cov_yadrenko"
  - "cor_yadrenko"
  - "vario_axis"
  - "cov_axis"
  - "cor_axis"
  - "spectrum"
  - "spectral_density"
  - "spectral_rad_pdf"

• **kwargs** – Keyword arguments forwarded to the plotting function “plot_” + *func* in *gstools.covmodel.plot*. 

---

3.6. *gstools.covmodel* 177
See also:

gstools.covmodel.plot

pykrige_vario (args=None, r=0)
Isotropic variogram of the model for pykrige.

set_arg_bounds (check_args=True, **kwargs)
Set bounds for the parameters of the model.

Parameters

- check_args (bool, optional) – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True
- **kwargs – Parameter name as keyword ("var", "len_scale", "nugget", <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

spectral_density (k)
Spectral density of the covariance model.
This is given by:

\[ \hat{S}(k) = \frac{S(k)}{\sigma^2} \]

Where \( S(k) \) is the spectrum of the covariance model.

Parameters k (float) – Radius of the phase: \( k = ||k|| \)

spectral_rad_pdf (r)
Radial spectral density of the model.

spectrum (k)
Spectrum of the covariance model.
This is given by:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \int C(r)e^{ik\cdot r}dr \]

Internally, this is calculated by the hankel transformation:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \cdot \left( \frac{2\pi}{k^{n/2-1}} \right)^{n/2} \int_0^{\infty} r^{n/2}C(r)J_{n/2-1}(kr)dr \]

Where \( C(r) \) is the covariance function of the model.

Parameters k (float) – Radius of the phase: \( k = ||k|| \)

var_factor ()
Factor for the variance.

vario_axis (r, axis=0)
Variogram along axis of anisotropy.

vario_nugget (r)
Isotropic variogram of the model respecting the nugget at r=0.

vario.spatial (pos)
Spatial variogram respecting anisotropy and rotation.

vario_yadrenko (zeta)
Yadrenko variogram for great-circle distance from latlon-pos.

variogram (r)
Isotropic variogram of the model.
property angles
   Rotation angles (in rad) of the model.
   Type numpy.ndarray

property anis
   The anisotropy factors of the model.
   Type numpy.ndarray

property anis_bounds
   Bounds for the nugget.
   Notes
   Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").
   Type list

property arg
   Names of all arguments.
   Type list of str

property arg_bounds
   Bounds for all parameters.
   Notes
   Keys are the arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").
   Type dict

property arg_list
   Values of all arguments.
   Type list of float

property dim
   The dimension of the model.
   Type int

property dist_func
   pdf, cdf and ppf.
   Spectral distribution info from the model.
   Type tuple of callable

property do_rotation
   State if a rotation is performed.
   Type bool

property field_dim
   The field dimension of the model.
   Type int

property hankel_kw
   hankel.SymmetricFourierTransform kwars.
Type `dict`

**property has_cdf**
State if a cdf is defined by the user.

Type `bool`

**property has_ppf**
State if a ppf is defined by the user.

Type `bool`

**property integral_scale**
The main integral scale of the model.

Raises `ValueError` – If integral scale is not setable.

Type `float`

**property integral_scale_vec**
The integral scales in each direction.

Notes
This is calculated by:

- `integral_scale_vec[0] = integral_scale`
- `integral_scale_vec[1] = integral_scale*anis[0]`

Type `numpy.ndarray`

**property is_isotropic**
State if a model is isotropic.

Type `bool`

**property iso_arg**
Names of isotropic arguments.

Type `list of str`

**property iso_arg_list**
Values of isotropic arguments.

Type `list of float`

**property latlon**
Whether the model depends on geographical coords.

Type `bool`

**property len_rescaled**
The rescaled main length scale of the model.

Type `float`

**property len_scale**
The main length scale of the model.

Type `float`

**property len_scale_bounds**
Bounds for the length scale.

Notes
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list

**property** len_scale_vec
The length scales in each direction.

**Notes**
This is calculated by:

- \(\text{len_scale_vec}[0] = \text{len_scale}\)
- \(\text{len_scale_vec}[1] = \text{len_scale} \times \text{anis}[0]\)
- \(\text{len_scale_vec}[2] = \text{len_scale} \times \text{anis}[1]\)

**Type** numpy.ndarray

**property** name
The name of the CovModel class.

**Type** str

**property** nugget
The nugget of the model.

**Type** float

**property** nugget_bounds
Bounds for the nugget.

**Notes**
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list

**property** opt_arg
Names of the optional arguments.

**Type** list of str

**property** opt_arg_bounds
Bounds for the optional arguments.

**Notes**
Keys are the opt-arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** dict

**property** pykrige_angle
2D rotation angle for pykrige.
property `pykrige_angle_x`
3D rotation angle around x for pykrige.

property `pykrige_angle_y`
3D rotation angle around y for pykrige.

property `pykrige_angle_z`
3D rotation angle around z for pykrige.

property `pykrige_anis`
2D anisotropy ratio for pykrige.

property `pykrige_anis_y`
3D anisotropy ratio in y direction for pykrige.

property `pykrige_anis_z`
3D anisotropy ratio in z direction for pykrige.

property `pykrige_kwargs`
Keyword arguments for pykrige routines.

property `rescale`
Rescale factor for the length scale of the model.

    Type float

property `sill`
The sill of the variogram.

    Notes
    This is calculated by:
    * \(\text{sill} = \text{variance} + \text{nugget}\)

    Type float

property `var`
The variance of the model.

    Type float

property `var_bounds`
Bounds for the variance.

    Notes
    Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

    Type list

property `var_raw`
The raw variance of the model without factor.

    (See, CovModel.var_factor)

    Type float
class gstools.covmodel.Rational(dim=3, var=1.0, len_scale=1.0, nugget=0.0, anis=1.0, angles=0.0, integral_scale=None, rescale=None, latlon=False, var_raw=None, hankel_kw=None, **opt_arg)

Bases: gstools.covmodel.base.CovModel

The rational quadratic covariance model.

Notes
This model is given by the following correlation function [Rasmussen2003]:

\[ \rho(r) = \left( 1 + \frac{1}{\alpha} \left( s \frac{r}{\ell} \right)^2 \right)^{-\alpha} \]

Where the standard rescale factor is \( s = 1 \). \( \alpha \) is a shape parameter and should be > 0.5.

For \( \alpha \to \infty \) this model converges to the Gaussian model:

\[ \rho(r) = \exp \left( - \left( s \frac{r}{\ell} \right)^2 \right) \]

References

Other Parameters

- alpha (float, optional) – Shape parameter. Standard range: [0.5, 50]
  Default: 1.0

Parameters

- dim (int, optional) – dimension of the model. Default: 3
- var (float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- len_scale (float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, anis will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- nugget (float, optional) – nugget of the model. Default: 0.0
- anis (float or list, optional) – anisotropy ratios in the transversal directions [e_y, e_z].
  - e_y = \frac{l_y}{l_x}
  - e_z = \frac{l_z}{l_x}
  If only one value is given in 3D, e_y will be set to 1. This value will be ignored, if multiple len_scales are given. Default: 1.0
- angles (float or list, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)
  Default: 0.0
- integral_scale (float or list or None, optional) – If given, len_scale will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None
• **rescale** (float or None, optional) – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None

• **latlon** (bool, optional) – Whether the model is describing 2D fields on earth's surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance $r$ will be replaced by $2 \sin(\alpha/2)$, where $\alpha$ is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, $dim$ will be set to 3 and anisotropy will be disabled. $rescale$ can be set to e.g. earth’s radius, to have a meaningful $len_scale$ parameter. Default: False

• **var_raw** (float or None, optional) – raw variance of the model which will be multiplied with $CovModel.var_factor$ to result in the actual variance. If given, $var$ will be ignored. (This is just for models that override $CovModel.var_factor$) Default: None

• **hankel_kw** (dict or None, optional) – Modify the init-arguments of $hankel$.SymmetricFourierTransform used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to {"a": -1, "b": 1, "N": 1000, "h": 0.001}. Default: None

• **opt_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section Other Parameters.

Attributes

- **angles** numpy.ndarray: Rotation angles (in rad) of the model.
- **anis** numpy.ndarray: The anisotropy factors of the model.
- **anis_bounds** list: Bounds for the nugget.
- **arg** list of str: Names of all arguments.
- **arg_bounds** dict: Bounds for all parameters.
- **arg_list** list of float: Values of all arguments.
- **dim** int: The dimension of the model.
- **dist_func** tuple of callable: pdf, cdf and ppf.
- **do_rotation** bool: State if a rotation is performed.
- **field_dim** int: The field dimension of the model.
- **hankel_kw** dict: $hankel$.SymmetricFourierTransform $kwargs$.
- **has_cdf** bool: State if a cdf is defined by the user.
- **has_ppf** bool: State if a ppf is defined by the user.
- **integral_scale** float: The main integral scale of the model.
- **integral_scale_vec** numpy.ndarray: The integral scales in each direction.
- **is_isotropic** bool: State if a model is isotropic.
- **iso_arg** list of str: Names of isotropic arguments.
- **iso_arg_list** list of float: Values of isotropic arguments.
- **latlon** bool: Whether the model depends on geographical coords.
- **len_rescaled** float: The rescaled main length scale of the model.
- **len_scale** float: The main length scale of the model.
- **len_scale_bounds** list: Bounds for the length scale.
**len_scale_vec** *numpy.ndarray*: The length scales in each direction.

**name** *str*: The name of the CovModel class.

**nugget** *float*: The nugget of the model.

**nugget_bounds** *list*: Bounds for the nugget.

**opt_arg** *list of str*: Names of the optional arguments.

**opt_arg_bounds** *dict*: Bounds for the optional arguments.

**pykrige_angle** 2D rotation angle for pykrige.

**pykrige_angle_x** 3D rotation angle around x for pykrige.

**pykrige_angle_y** 3D rotation angle around y for pykrige.

**pykrige_angle_z** 3D rotation angle around z for pykrige.

**pykrige_anis** 2D anisotropy ratio for pykrige.

**pykrige_anis_y** 3D anisotropy ratio in y direction for pykrige.

**pykrige_anis_z** 3D anisotropy ratio in z direction for pykrige.

**pykrige_kwargs** Keyword arguments for pykrige routines.

**rescale** *float*: Rescale factor for the length scale of the model.

**sill** *float*: The sill of the variogram.

**var** *float*: The variance of the model.

**var_bounds** *list*: Bounds for the variance.

**var_raw** *float*: The raw variance of the model without factor.

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anisometrize(pos)</td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td>calc_integral_scale()</td>
<td>Calculate the integral scale of the isotropic model.</td>
</tr>
<tr>
<td>check_arg_bounds()</td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td>check_dim(dim)</td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td>check_opt_arg()</td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td>cor(h)</td>
<td>Rational normalized correlation function.</td>
</tr>
<tr>
<td>cor_axis(r[, axis])</td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td>cor_spatial(pos)</td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cor_yadrenko(zeta)</td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>correlation(r)</td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td>cov_axis(r[, axis])</td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td>cov_nugget(r)</td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td>cov_spatial(pos)</td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cov_yadrenko(zeta)</td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>covariance(r)</td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td>default_arg_bounds()</td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td>default_opt_arg()</td>
<td>Defaults for the optional arguments.</td>
</tr>
<tr>
<td>default_opt_arg_bounds()</td>
<td>Defaults for boundaries of the optional arguments.</td>
</tr>
</tbody>
</table>

*continues on next page*
Table 19 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>default_rescale()</code></td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td><code>fit_variogram(x_data, y_data, anis, sill)</code></td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td><code>fix_dim()</code></td>
<td>Set a fix dimension for the model.</td>
</tr>
<tr>
<td><code>isometrize(pos)</code></td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td><code>ln_spectral_rad_pdf(r)</code></td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td><code>main_axes()</code></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><code>percentile_scale([per])</code></td>
<td>Calculate the percentile scale of the isotrope model.</td>
</tr>
<tr>
<td><code>plot([func])</code></td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td><code>pykrige_vario([args, r])</code></td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td><code>set_arg_bounds([check_args])</code></td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td><code>spectral_density(k)</code></td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td><code>spectral_rad_pdf(r)</code></td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td><code>spectrum(k)</code></td>
<td>Spectrum of the covariance model.</td>
</tr>
<tr>
<td><code>var_factor()</code></td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td><code>vario_axis(r[, axis])</code></td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td><code>vario_nugget(r)</code></td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>vario_spatial(pos)</code></td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>vario_yadrenko(zeta)</code></td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>vario(r)</code></td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

- `anisometrize(pos)`
  Bring a position tuple into the anisotropic coordinate-system.

- `calc_integral_scale()`
  Calculate the integral scale of the isotrope model.

- `check_arg_bounds()`
  Check arguments to be within their given bounds.

- `check_dim(dim)`
  Check the given dimension.

- `check_opt_arg()`
  Run checks for the optional arguments.
  This is in addition to the bound-checks

**Notes**

- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

- `cor(h)`
  Rational normalized correlation function.

- `cor_axis(r, axis=0)`
  Correlation along axis of anisotropy.

- `cor_spatial(pos)`
  Spatial correlation respecting anisotropy and rotation.
cor_yadrenko (zeta)
Yadrenko correlation for great-circle distance from latlon-pos.

correlation (r)
Correlation function of the model.

cov_axis (r, axis=0)
Covariance along axis of anisotropy.

cov_nugget (r)
Isotropic covariance of the model respecting the nugget at r=0.

cov_spatial (pos)
Spatial covariance respecting anisotropy and rotation.

cov_yadrenko (zeta)
Yadrenko covariance for great-circle distance from latlon-pos.

covariance (r)
Covariance of the model.

default_arg_bounds ()
Provide default boundaries for arguments.
Given as a dictionary.

default_opt_arg ()
Defaults for the optional arguments.

• {"alpha": 1.0}

Returns Defaults for optional arguments

Return type dict

default_opt_arg_bounds ()
Defaults for boundaries of the optional arguments.

• {"alpha": [0.5, 50.0]}

Returns Boundaries for optional arguments

Return type dict

default_rescale ()
Provide default rescaling factor.

fit_variogram (x_data, y_data, anis=True, sill=None, init_guess='default', weights=None, method='trf', loss='soft_l1', max_eval=None, return_r2=False, curve_fit_kwargs=None, **para_select)
Fitting the variogram-model to an empirical variogram.

Parameters

• x_data (numpy.ndarray) – The bin-centers of the empirical variogram.

• y_data (numpy.ndarray) – The measured variogram. If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.

• anis (bool, optional) – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios won’t be altered during fitting. Default: True

• sill (float or bool, optional) – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:
- \text{sill} = \text{var} + \text{nugget}

- if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.

If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If \text{sill=False}, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None

- \text{init\_guess} (str or dict, optional) – Initial guess for the estimation. Either:
  - ”default”: using the default values of the covariance model (“len\_scale” will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))
  - ”current”: using the current values of the covariance model
  - dict: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above (”default” by default)) Example: {"len\_scale": 10, "default": "current"}

  Default: “default”

- \text{weights} (str, numpy.ndarray, callable, optional) – Weights applied to each point in the estimation. Either:
  - ’inv’: inverse distance \(1 / (x\_data + 1)\)
  - list: weights given per bin
  - callable: function applied to \(x\_data\)

If callable, it must take a 1-d ndarray. Then \text{weights} = \(f(x\_data)\). Default: None

- \text{method} (\{'trf', 'dogbox'\}, optional) – Algorithm to perform minimization.
  - ’trf’: Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - ’dogbox’: dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

  Default: ‘trf’

- \text{loss} (str or callable, optional) – Determines the loss function in scipy’s curve_fit. The following keyword values are allowed:
  - ’linear’ (default): \(\rho(z) = z\). Gives a standard least-squares problem.
  - ’soft\_II’: \(\rho(z) = 2 * ((l + z)**0.5 - 1)\). The smooth approximation of II (absolute value) loss. Usually a good choice for robust least squares.
  - ‘huber’: \(\rho(z) = z \text{ if } z <= 1 \text{ else } 2*z**0.5 - 1\). Works similarly to ’soft\_II’.
  - ’cauchy’: \(\rho(z) = \ln(1 + z)\). Severely weakens outliers influence, but may cause difficulties in optimization process.
  - ’arctan’: \(\rho(z) = \arctan(z)\). Limits a maximum loss on a single residual, has properties similar to ’cauchy’.

If callable, it must take a 1-d ndarray \(z=f**2\) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ’soft\_II’
• **max_eval** (*int* or *None*, optional) – Maximum number of function evaluations before the termination. If *None* (default), the value is chosen automatically: \(100 \times n\).

• **return_r2** (*bool*, optional) – Whether to return the r2 score of the estimation. Default: *False*

• **curve_fit_kwargs** (*dict*, optional) – Other keyword arguments passed to scipy’s `curve_fit`. Default: *None*

• **para_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters won’t be fitted. By default, all parameters are fitted.

**Returns**

• **fit_para** (*dict*) – Dictionary with the fitted parameter values

• **pcov** (*numpy.ndarray*) – The estimated covariance of \(p_{opt}\) from `scipy.optimize.curve_fit`. To compute one standard deviation errors on the parameters use \(p_{err} = \sqrt{\text{np.diag}(\text{pcov})}\).

• **r2_score** (*float*, optional) – r2 score of the curve fitting results. Only if return_r2 is True.

**Notes**

You can set the bounds for each parameter by accessing `CovModel.set_arg_bounds`.

The fitted parameters will be instantly set in the model.

```python
fix_dim() # Set a fix dimension for the model.

isometrize(pos) # Make a position tuple ready for isotropic operations.

ln_spectral_rad_pdf(r) # Log radial spectral density of the model.

main_axes() # Axes of the rotated coordinate-system.

percentile_scale(per=0.9) # Calculate the percentile scale of the isotrope model.

This is the distance, where the given percentile of the variance is reached by the variogram

plot(func='variogram', **kwargs) # Plot a function of a the CovModel.

Parameters

• **func** (*str*, optional) – Function to be plotted. Could be one of:
 – ”variogram”
 – ”covariance”
 – ”correlation”
 – ”vario_spatial”
 – ”cov_spatial”
 – ”cor_spatial”
 – ”vario_yadrenko”
 – ”cov_yadrenko”
```
- "cor_yadrenko"
- "vario_axis"
- "cov_axis"
- "cor_axis"
- "spectrum"
- "spectral_density"
- "spectral_rad_pdf"

• **kwargs – Keyword arguments forwarded to the plotting function “plot_” + func in gstools.covmodel.plot.

See also:
gstools.covmodel.plot

pykrige_vario(args=None, r=0)
Isotropic variogram of the model for pykrige.

set_arg_bounds(check_args=True, **kwargs)
Set bounds for the parameters of the model.

Parameters
• check_args(bool, optional) – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True
• **kwargs – Parameter name as keyword (“var”, “len_scale”, “nugget”, <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open (“o”) or closed (“c”).

spectral_density(k)
Spectral density of the covariance model.

This is given by:

\[
\tilde{S}(k) = \frac{S(k)}{\sigma^2}
\]

Where \( S(k) \) is the spectrum of the covariance model.

Parameters k (float) – Radius of the phase: \( k = \|k\| \)

spectral_rad_pdf(r)
Radial spectral density of the model.

spectrum(k)
Spectrum of the covariance model.

This is given by:

\[
S(k) = \left(\frac{1}{2\pi}\right)^n \int C(r)e^{ikr}d^nr
\]

Internally, this is calculated by the hankel transformation:

\[
S(k) = \left(\frac{1}{2\pi}\right)^n \frac{(2\pi)^{n/2}}{k^{n/2-1}} \int_0^{\infty} r^{n/2} C(r) J_{n/2-1}(kr)dr
\]

Where \( C(r) \) is the covariance function of the model.

Parameters k (float) – Radius of the phase: \( k = \|k\| \)

var_factor()
Factor for the variance.
**vario_axis** *(r, axis=0)*
Variogram along axis of anisotropy.

**vario_nugget** *(r)*
Isotropic variogram of the model respecting the nugget at r=0.

**vario_spatial** *(pos)*
Spatial variogram respecting anisotropy and rotation.

**vario_yadrenko** *(zeta)*
Yadrenko variogram for great-circle distance from latlon-pos.

**variogram** *(r)*
Isotropic variogram of the model.

**property angles**
Rotation angles (in rad) of the model.

  Type *numpy.ndarray*

**property anis**
The anisotropy factors of the model.

  Type *numpy.ndarray*

**property anis_bounds**
Bounds for the nugget.

  Notes
- Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

  Type *list*

**property arg**
Names of all arguments.

  Type *list of str*

**property arg_bounds**
Bounds for all parameters.

  Notes
- Keys are the arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

  Type *dict*

**property arg_list**
Values of all arguments.

  Type *list of float*

**property dim**
The dimension of the model.

  Type *int*

**property dist_func**
pdf, cdf and ppf.
Spectral distribution info from the model.
Type `tuple of callable`

**property do_rotation**
State if a rotation is performed.

Type `bool`

**property field_dim**
The field dimension of the model.

Type `int`

**property hankel_kw**
hankel.SymmetricFourierTransform `kwargs`.

Type `dict`

**property has_cdf**
State if a cdf is defined by the user.

Type `bool`

**property has_ppf**
State if a ppf is defined by the user.

Type `bool`

**property integral_scale**
The main integral scale of the model.

Raises `ValueError` – If integral scale is not setable.

Type `float`

**property integral_scale_vec**
The integral scales in each direction.

Notes
This is calculated by:

- `integral_scale_vec[0] = integral_scale`
- `integral_scale_vec[1] = integral_scale*anis[0]`

Type `numpy.ndarray`

**property is_isotropic**
State if a model is isotropic.

Type `bool`

**property iso_arg**
Names of isotropic arguments.

Type `list of str`

**property iso_arg_list**
Values of isotropic arguments.

Type `list of float`

**property latlon**
Whether the model depends on geographical coords.

Type `bool`
property len_rescaled
    The rescaled main length scale of the model.
    
    Type float

property len_scale
    The main length scale of the model.
    
    Type float

property len_scale_bounds
    Bounds for the length scale.
    
    Notes
    Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").
    
    Type list

property len_scale_vec
    The length scales in each direction.
    
    Notes
    This is calculated by:
    
    - len_scale_vec[0] = len_scale
    - len_scale_vec[1] = len_scale*anis[0]
    
    Type numpy.ndarray

property name
    The name of the CovModel class.
    
    Type str

property nugget
    The nugget of the model.
    
    Type float

property nugget_bounds
    Bounds for the nugget.
    
    Notes
    Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").
    
    Type list

property opt_arg
    Names of the optional arguments.
    
    Type list of str
**property opt_arg_bounds**

Bounds for the optional arguments.

**Notes**

Keys are the opt-arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, <type>]\) where \(<type>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** dict

**property pykrige_angle**

2D rotation angle for pykrige.

**property pykrige_angle_x**

3D rotation angle around x for pykrige.

**property pykrige_angle_y**

3D rotation angle around y for pykrige.

**property pykrige_angle_z**

3D rotation angle around z for pykrige.

**property pykrige_anis**

2D anisotropy ratio for pykrige.

**property pykrige_anis_y**

3D anisotropy ratio in y direction for pykrige.

**property pykrige_anis_z**

3D anisotropy ratio in z direction for pykrige.

**property pykrige_kwargs**

Keyword arguments for pykrige routines.

**property rescale**

Rescale factor for the length scale of the model.

**Type** float

**property sill**

The sill of the variogram.

**Notes**

This is calculated by:

- \[\text{sill} = \text{variance} + \text{nugget}\]

**Type** float

**property var**

The variance of the model.

**Type** float

**property var_bounds**

Bounds for the variance.

**Notes**
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list

**property var_raw**

The raw variance of the model without factor.

(See, CovModel.var_factor)

**Type** float
The Cubic covariance model.

A model with reverse curvature near the origin and a finite range of correlation.

**Notes**

This model is given by the following correlation function [Chiles2009]:

\[
\rho(r) = \begin{cases} 
1 - 7 \left(s \cdot \frac{r}{\ell}\right)^2 + \frac{35}{4} \left(s \cdot \frac{r}{\ell}\right)^3 - \frac{7}{2} \left(s \cdot \frac{r}{\ell}\right)^5 + \frac{3}{4} \left(s \cdot \frac{r}{\ell}\right)^7 & r < \frac{\ell}{s} \\
0 & r \geq \frac{\ell}{s}
\end{cases}
\]

Where the standard rescale factor is \( s = 1 \).

**References**

**Parameters**

- **dim** (int, optional) – dimension of the model. Default: 3
- **var** (float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- **len_scale** (float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, **anis** will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- **nugget** (float, optional) – nugget of the model. Default: 0.0
- **anis** (float or list, optional) – anisotropy ratios in the transversal directions \([e_y, e_z] \).
  - \( e_y = l_y / l_x \)
  - \( e_z = l_z / l_x \)
  If only one value is given in 3D, \( e_y \) will be set to 1. This value will be ignored, if multiple len_scales are given. Default: 1.0
- **angles** (float or list, optional) – angles of rotation (given in rad):  
  - in 2D: given as rotation around z-axis  
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)  
  Default: 0.0
- **integral_scale** (float or list or None, optional) – If given, **len_scale** will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None
- **rescale** (float or None, optional) – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None
• **latlon** (bool, optional) – Whether the model is describing 2D fields on earth's surface described by latitude and longitude. When using this, the model will internally use the associated 'Yadrenko' model to represent a valid model. This means, the spatial distance $r$ will be replaced by $2 \sin(\alpha/2)$, where $\alpha$ is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, $dim$ will be set to 3 and anisotropy will be disabled. $rescale$ can be set to e.g. earth's radius, to have a meaningful $len\_scale$ parameter. Default: False

• **var\_raw** (float or None, optional) – raw variance of the model which will be multiplied with $CovModel.var\_factor$ to result in the actual variance. If given, $var$ will be ignored. (This is just for models that override $CovModel.var\_factor$) Default: None

• **hankel\_kw** (dict or None, optional) – Modify the init-arguments of $hankel$ SymmetricFourierTransform used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to {"a": -1, "b": 1, "N": 1000, "h": 0.001}. Default: None

• **opt\_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section Other Parameters.

Attributes

- **angles** numpy.ndarray: Rotation angles (in rad) of the model.
- **anis** numpy.ndarray: The anisotropy factors of the model.
- **anis\_bounds** list: Bounds for the nugget.
- **arg** list of str: Names of all arguments.
- **arg\_bounds** dict: Bounds for all parameters.
- **arg\_list** list of float: Values of all arguments.
- **dim** int: The dimension of the model.
- **dist\_func** tuple of callable: pdf, cdf and ppf.
- **do\_rotation** bool: State if a rotation is performed.
- **field\_dim** int: The field dimension of the model.
- **hankel\_kw** dict: hankel.SymmetricFourierTransform kwargs.
- **has\_cdf** bool: State if a cdf is defined by the user.
- **has\_ppf** bool: State if a ppf is defined by the user.
- **integral\_scale** float: The main integral scale of the model.
- **integral\_scale\_vec** numpy.ndarray: The integral scales in each direction.
- **is\_isotropic** bool: State if a model is isotropic.
- **iso\_arg** list of str: Names of isotropic arguments.
- **iso\_arg\_list** list of float: Values of isotropic arguments.
- **latlon** bool: Whether the model depends on geographical coords.
- **len\_rescaled** float: The rescaled main length scale of the model.
- **len\_scale** float: The main length scale of the model.
- **len\_scale\_bounds** list: Bounds for the length scale.
- **len\_scale\_vec** numpy.ndarray: The length scales in each direction.
- **name** str: The name of the CovModel class.
- **nugget** float: The nugget of the model.
**nugget_bounds** list: Bounds for the nugget.

**opt_arg** list of **str**: Names of the optional arguments.

**opt_arg_bounds** dict: Bounds for the optional arguments.

**pykrige_angle** 2D rotation angle for pykrige.

**pykrige_angle_x** 3D rotation angle around x for pykrige.

**pykrige_angle_y** 3D rotation angle around y for pykrige.

**pykrige_angle_z** 3D rotation angle around z for pykrige.

**pykrige_anis** 2D anisotropy ratio for pykrige.

**pykrige_anis_y** 3D anisotropy ratio in y direction for pykrige.

**pykrige_anis_z** 3D anisotropy ratio in z direction for pykrige.

**pykrige_kwargs** Keyword arguments for pykrige routines.

**rescale** float: Rescale factor for the length scale of the model.

**sill** float: The sill of the variogram.

**var** float: The variance of the model.

**var_bounds** list: Bounds for the variance.

**var_raw** float: The raw variance of the model without factor.

## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>anisometrize</strong>(pos)</td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td><strong>calc_integral_scale()</strong></td>
<td>Calculate the integral scale of the isotrope model.</td>
</tr>
<tr>
<td><strong>check_arg_bounds()</strong></td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td><strong>check_dim</strong>(dim)</td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td><strong>check_opt_arg()</strong></td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td><strong>cor</strong>(h)</td>
<td>Spherical normalized correlation function.</td>
</tr>
<tr>
<td><strong>cor_axis</strong>(r[, axis])</td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cor_spatial</strong>(pos)</td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cor_yadrenko</strong>(zeta)</td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>correlation</strong>(r)</td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td><strong>cov_axis</strong>(r[, axis])</td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cov_nugget</strong>(r)</td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><strong>cov_spatial</strong>(pos)</td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cov_yadrenko</strong>(zeta)</td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>covariance</strong>(r)</td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td><strong>default_arg_bounds()</strong></td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td><strong>default_opt_arg()</strong></td>
<td>Provide default optional arguments by the user.</td>
</tr>
<tr>
<td><strong>default_opt_arg_bounds()</strong></td>
<td>Provide default boundaries for optional arguments.</td>
</tr>
<tr>
<td><strong>default_rescale()</strong></td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td><strong>fit_variogram</strong>(x_data, y_data[, anis, sill, ...])</td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td><strong>fix_dim()</strong></td>
<td>Set a fix dimension for the model.</td>
</tr>
</tbody>
</table>

continues on next page
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>isometrize(pos)</code></td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td><code>ln_spectral_rad_pdf(r)</code></td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td><code>main_axes()</code></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><code>percentile_scale([per])</code></td>
<td>Calculate the percentile scale of the isotropic model.</td>
</tr>
<tr>
<td><code>plot([func])</code></td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td><code>pykrige_vario([args, r])</code></td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td><code>set_arg_bounds([check_args])</code></td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td><code>spectral_density(k)</code></td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td><code>spectral_rad_pdf(r)</code></td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td><code>spectrum(k)</code></td>
<td>Spectrum of the covariance model.</td>
</tr>
<tr>
<td><code>var_factor()</code></td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td><code>vario_axis(r[, axis])</code></td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td><code>vario_nugget(r)</code></td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>vario_spatial(pos)</code></td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>vario_yadrenko(zeta)</code></td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>variogram(r)</code></td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

### Notes
- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

### Function Descriptions
- `anisometrize(pos)`
  Bring a position tuple into the anisotropic coordinate-system.
- `calc_integral_scale()`
  Calculate the integral scale of the isotropic model.
- `check_arg_bounds()`
  Check arguments to be within their given bounds.
- `check_dim(dim)`
  Check the given dimension.
- `check_opt_arg()`
  Run checks for the optional arguments.
  This is in addition to the bound-checks

### Examples
- `cor(h)`
  Spherical normalized correlation function.
- `cor_axis(r, axis=0)`
  Correlation along axis of anisotropy.
- `cor.spatial(pos)`
  Spatial correlation respecting anisotropy and rotation.
- `cor_yadrenko(zeta)`
  Yadrenko correlation for great-circle distance from latlon-pos.
**cov_axis** \((r, \text{axis}=0)\)
Covariance along axis of anisotropy.

**cov_nugget** \((r)\)
Isotropic covariance of the model respecting the nugget at \(r=0\).

**cov_spatial** \((\text{pos})\)
Spatial covariance respecting anisotropy and rotation.

**cov_yadrenko** \((\text{zeta})\)
Yadrenko covariance for great-circle distance from latlon-pos.

**covariance** \((r)\)
Covariance of the model.

**default_arg_bounds** ()
Provide default boundaries for arguments.
Given as a dictionary.

**default_opt_arg** ()
Provide default optional arguments by the user.
Should be given as a dictionary when overridden.

**default_opt_arg_bounds** ()
Provide default boundaries for optional arguments.

**default_rescale** ()
Provide default rescaling factor.

**fit_variogram** \((x\_data, y\_data, anis=True, sill=None, init\_guess='default', weights=None, method='trf', loss='soft_l1', max\_eval=None, return\_r2=False, curve\_fit\_kwargs=None, **para\_select)\)
Fitting the variogram-model to an empirical variogram.

**Parameters**

- **x_data** *(numpy.ndarray)* – The bin-centers of the empirical variogram.
- **y_data** *(numpy.ndarray)* – The measured variogram If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.
- **anis** *(bool, optional)* – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios won’t be altered during fitting. Default: True
- **sill** *(float or bool, optional)* – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:
  - \(\text{sill} = \text{var} + \text{nugget}\)
  - if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.

  If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None
- **init_guess** *(str or dict, optional)* – Initial guess for the estimation. Either:
  - ”default”: using the default values of the covariance model (“len_scale” will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))
  - ”current”: using the current values of the covariance model
• **weights** *(str, numpy.ndarray, callable, optional)* – Weights applied to each point in the estimation. Either:
  - 'inv': inverse distance 1 / (x_data + 1)
  - list: weights given per bin
  - callable: function applied to x_data
If callable, it must take a 1-d ndarray. Then weights = f(x_data). Default: None

• **method** *({'trf', 'dogbox'}, optional)* – Algorithm to perform minimization.
  - 'trf': Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - 'dogbox': dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.
Default: ‘trf’

• **loss** *(str or callable, optional)* – Determines the loss function in scipy’s curve_fit. The following keyword values are allowed:
  - 'linear' (default): \(\rho(z) = z\). Gives a standard least-squares problem.
  - 'soft_l1': \(\rho(z) = 2 * ((1 + z)^{0.5} - 1)\). The smooth approximation of \(l_1\) (absolute value) loss. Usually a good choice for robust least squares.
  - 'huber': \(\rho(z) = z\) if \(z \leq 1\) else \(2*z^{0.5} - 1\). Works similarly to 'soft_l1'.
  - 'cauchy': \(\rho(z) = \ln(1 + z)\). Severely weakens outliers influence, but may cause difficulties in optimization process.
  - 'arctan': \(\rho(z) = \arctan(z)\). Limits a maximum loss on a single residual, has properties similar to 'cauchy'.
If callable, it must take a 1-d ndarray \(z=f**2\) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_l1’

• **max_eval** *(int or None, optional)* – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

• **return_r2** *(bool, optional)* – Whether to return the r2 score of the estimation. Default: False

• **curve_fit_kwargs** *(dict, optional)* – Other keyword arguments passed to scipy’s curve_fit. Default: None

• **para_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters wont be fitted. By default, all parameters are fitted.

**Returns**

• **fit_para** *(dict)* – Dictionary with the fitted parameter values
• `pcov` (numpy.ndarray) – The estimated covariance of `popt` from scipy.optimize.curve_fit. To compute one standard deviation errors on the parameters use `$perr = np.sqrt(np.diag(pcov))$`.

• `r2_score` (float, optional) – r2 score of the curve fitting results. Only if `return_r2` is True.

---

**Notes**

You can set the bounds for each parameter by accessing `CovModel.set_arg_bounds`. The fitted parameters will be instantly set in the model.

---

**fix_dim()**
Set a fix dimension for the model.

**isometrize**(pos)
Make a position tuple ready for isotropic operations.

**ln_spectral_rad_pdf**(r)
Log radial spectral density of the model.

**main_axes()**
Axes of the rotated coordinate-system.

**percentile_scale**(per=0.9)
Calculate the percentile scale of the isotrope model.
This is the distance, where the given percentile of the variance is reached by the variogram

**plot**(func='variogram', **kwargs)
Plot a function of a the CovModel.

**Parameters**

• `func` (str, optional) – Function to be plotted. Could be one of:
  - "variogram"
  - "covariance"
  - "correlation"
  - "vario_spatial"
  - "cov_spatial"
  - "cor_spatial"
  - "vario_yadrenko"
  - "cov_yadrenko"
  - "cor_yadrenko"
  - "vario_axis"
  - "cov_axis"
  - "cor_axis"
  - "spectrum"
  - "spectral_density"
  - "spectral_rad_pdf"

• **kwargs** – Keyword arguments forwarded to the plotting function “plot_” + `func` in `gstools.covmodel.plot`.
See also:

gstools.covmodel.plot

**pykrige_vario** *(args=None, r=0)*
Isotropic variogram of the model for pykrige.

**set_arg_bounds** *(check_args=True, **kwargs)*
Set bounds for the parameters of the model.

**Parameters**

- **check_args** *(bool, optional)* – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True

- ****kwargs – Parameter name as keyword ("var", “len_scale”, “nugget”, <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**spectral_density** *(k)*
Spectral density of the covariance model.

This is given by:

\[
\\hat{S}(k) = \frac{S(k)}{\sigma^2}
\]

Where \(S(k)\) is the spectrum of the covariance model.

**Parameters**

- **k** *(float)* – Radius of the phase: \(k = ||k||\)

**spectral_rad_pdf** *(r)*
Radial spectral density of the model.

**spectrum** *(k)*
Spectrum of the covariance model.

This is given by:

\[
S(k) = \left(\frac{1}{2\pi}\right)^n \int C(r)e^{ikr}r^n dr
\]

Internally, this is calculated by the hankel transformation:

\[
S(k) = \left(\frac{1}{2\pi}\right)^n \cdot \frac{(2\pi)^{n/2}}{K^{n/2-1}} \int_0^\infty r^{n/2}C(r)J_{n/2-1}(kr)dr
\]

Where \(C(r)\) is the covariance function of the model.

**Parameters**

- **k** *(float)* – Radius of the phase: \(k = ||k||\)

**var_factor** *
Factor for the variance.

**vario_axis** *(r, axis=0)*
Variogram along axis of anisotropy.

**vario_nugget** *(r)*
Isotropic variogram of the model respecting the nugget at r=0.

**vario.spatial** *(pos)*
Spatial variogram respecting anisotropy and rotation.

**vario_yadrenko** *(zeta)*
Yadrenko variogram for great-circle distance from latlon-pos.

**variogram** *(r)*
Isotropic variogram of the model.
property angles
Rotation angles (in rad) of the model.
    Type numpy.ndarray

property anis
The anisotropy factors of the model.
    Type numpy.ndarray

property anis_bounds
Bounds for the nugget.

Notes
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

    Type list

property arg
Names of all arguments.
    Type list of str

property arg_bounds
Bounds for all parameters.

Notes
Keys are the arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

    Type dict

property arg_list
Values of all arguments.
    Type list of float

property dim
The dimension of the model.
    Type int

property dist_func
pdf, cdf and ppf.
Spectral distribution info from the model.
    Type tuple of callable

property do_rotation
State if a rotation is performed.
    Type bool

property field_dim
The field dimension of the model.
    Type int

property hankel_kw
hankel.SymmetricFourierTransform kwargs.
Type `dict`

**property has_cdf**
State if a cdf is defined by the user.

Type `bool`

**property has_ppf**
State if a ppf is defined by the user.

Type `bool`

**property integral_scale**
The main integral scale of the model.

Raises `ValueError` – If integral scale is not setable.

Type `float`

**property integral_scale_vec**
The integral scales in each direction.

**Notes**

This is calculated by:

- `integral_scale_vec[0] = integral_scale`
- `integral_scale_vec[1] = integral_scale*anis[0]`

Type `numpy.ndarray`

**property is_isotropic**
State if a model is isotropic.

Type `bool`

**property iso_arg**
Names of isotropic arguments.

Type `list of str`

**property iso_arg_list**
Values of isotropic arguments.

Type `list of float`

**property latlon**
Whether the model depends on geographical coords.

Type `bool`

**property len_rescaled**
The rescaled main length scale of the model.

Type `float`

**property len_scale**
The main length scale of the model.

Type `float`

**property len_scale_bounds**
Bounds for the length scale.

**Notes**
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list

**property** `len_scale_vec`  
The length scales in each direction.

**Notes**  
This is calculated by:

- `len_scale_vec[0] = len_scale`
- `len_scale_vec[1] = len_scale*anis[0]`

**Type** `numpy.ndarray`

**property** `name`  
The name of the CovModel class.

**Type** `str`

**property** `nugget`  
The nugget of the model.

**Type** `float`

**property** `nugget_bounds`  
Bounds for the nugget.

**Notes**  
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list

**property** `opt_arg`  
Names of the optional arguments.

**Type** list of `str`

**property** `opt_arg_bounds`  
Bounds for the optional arguments.

**Notes**  
Keys are the opt-arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** `dict`

**property** `pykrige_angle`  
2D rotation angle for pykrige.
property pykrige_angle_x
3D rotation angle around x for pykrige.

property pykrige_angle_y
3D rotation angle around y for pykrige.

property pykrige_angle_z
3D rotation angle around z for pykrige.

property pykrige_anis
2D anisotropy ratio for pykrige.

property pykrige_anis_y
3D anisotropy ratio in y direction for pykrige.

property pykrige_anis_z
3D anisotropy ratio in z direction for pykrige.

property pykrige_kwargs
Keyword arguments for pykrige routines.

property rescale
Rescale factor for the length scale of the model.

    Type float

property sill
The sill of the variogram.

    Notes
    This is calculated by:

    • sill = variance + nugget

    Type float

property var
The variance of the model.

    Type float

property var_bounds
Bounds for the variance.

    Notes
    Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

    Type list

property var_raw
The raw variance of the model without factor.

(See. CovModel.var_factor)

    Type float
**gstools.covmodel.Linear**

class gstools.covmodel.Linear(dim=3, var=1.0, len_scale=1.0, nugget=0.0, anis=1.0, angles=0.0, integral_scale=None, rescale=None, latlon=False, var_raw=None, hankel_kw=None, **opt_arg)

Bases: gstools.covmodel.base.CovModel

The bounded linear covariance model.

This model is derived from the relative intersection area of two lines in 1D, where the middle points have a distance of $r$ and the line lengths are $\ell$.

**Notes**

This model is given by the following correlation function [Webster2007]:

$$
\rho(r) = \begin{cases} 
1 - s \cdot \frac{r}{\ell} & r < \frac{\ell}{s} \\
0 & r \geq \frac{\ell}{s}
\end{cases}
$$

Where the standard rescale factor is $s = 1$.

**References**

**Parameters**

- **dim** (int, optional) – dimension of the model. Default: 3
- **var** (float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- **len_scale** (float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, **anis** will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- **nugget** (float, optional) – nugget of the model. Default: 0.0
- **anis** (float or list, optional) – anisotropy ratios in the transversal directions $[e_y, e_z]$.
  - $e_y = l_y / l_x$
  - $e_z = l_z / l_x$

  If only one value is given in 3D, $e_y$ will be set to 1. This value will be ignored, if multiple len_scales are given. Default: 1.0
- **angles** (float or list, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)

  Default: 0.0
- **integral_scale** (float or list or None, optional) – If given, len_scale will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None
- **rescale** (float or None, optional) – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None
- **latlon** (bool, optional) – Whether the model is describing 2D fields on earths surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance $r$ will be replaced by $2 \sin(a/2)$, where $a$ is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, dim will be set to 3 and anisotropy will be disabled. rescale can be set to e.g. earth’s radius, to have a meaningful len_scale parameter. Default: False

- **var_raw** (float or None, optional) – raw variance of the model which will be multiplied with CovModel.var_factor to result in the actual variance. If given, var will be ignored. (This is just for models that override CovModel.var_factor) Default: None

- **hankel_kw** (dict or None, optional) – Modify the init-arguments of hankel.SymmetricFourierTransform used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to ("a": -1, "b": 1, "N": 1000, "h": 0.001). Default: None

- **opt_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section Other Parameters.

### Attributes

- **angles** numpy.ndarray: Rotation angles (in rad) of the model.
- **anis** numpy.ndarray: The anisotropy factors of the model.
- **anis_bounds** list: Bounds for the nugget.
- **arg** list of str: Names of all arguments.
- **arg_bounds** dict: Bounds for all parameters.
- **arg_list** list of float: Values of all arguments.
- **dim** int: The dimension of the model.
- **dist_func** tuple of callable: pdf, cdf and ppf.
- **do_rotation** bool: State if a rotation is performed.
- **field_dim** int: The field dimension of the model.
- **hankel_kw** dict: hankel.SymmetricFourierTransform kwargs.
- **has_cdf** bool: State if a cdf is defined by the user.
- **has_ppf** bool: State if a ppf is defined by the user.
- **integral_scale** float: The main integral scale of the model.
- **integral_scale_vec** numpy.ndarray: The integral scales in each direction.
- **is_isotropic** bool: State if a model is isotropic.
- **iso_arg** list of str: Names of isotropic arguments.
- **iso_arg_list** list of float: Values of isotropic arguments.
- **latlon** bool: Whether the model depends on geographical coords.
- **len_rescaled** float: The rescaled main length scale of the model.
- **len_scale** float: The main length scale of the model.
- **len_scale_bounds** list: Bounds for the lenght scale.
- **len_scale_vec** numpy.ndarray: The length scales in each direction.
- **name** str: The name of the CovModel class.
- **nugget** float: The nugget of the model.
**nugget_bounds** list: Bounds for the nugget.

**opt_arg** list of str: Names of the optional arguments.

**opt_arg_bounds** dict: Bounds for the optional arguments.

**pykrige_angle** 2D rotation angle for pykrige.

**pykrige_angle_x** 3D rotation angle around x for pykrige.

**pykrige_angle_y** 3D rotation angle around y for pykrige.

**pykrige_angle_z** 3D rotation angle around z for pykrige.

**pykrige_anis** 2D anisotropy ratio for pykrige.

**pykrige_anis_y** 3D anisotropy ratio in y direction for pykrige.

**pykrige_anis_z** 3D anisotropy ratio in z direction for pykrige.

**pykrige_kwargs** Keyword arguments for pykrige routines.

**rescale** float: Rescale factor for the length scale of the model.

**sill** float: The sill of the variogram.

**var** float: The variance of the model.

**var_bounds** list: Bounds for the variance.

**var_raw** float: The raw variance of the model without factor.

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>anisometrize</strong>(pos)</td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td><strong>calc_integral_scale()</strong></td>
<td>Calculate the integral scale of the isotropic model.</td>
</tr>
<tr>
<td><strong>check_arg_bounds()</strong></td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td><strong>check_dim</strong>(dim)</td>
<td>Linear model is only valid in 1D.</td>
</tr>
<tr>
<td><strong>check_opt_arg()</strong></td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td><strong>cor</strong>(h)</td>
<td>Linear normalized correlation function.</td>
</tr>
<tr>
<td><strong>cor_axis</strong>(r[, axis])</td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cor_spatial</strong>(pos)</td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cor_yadrenko</strong>(zeta)</td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>correlation</strong>(r)</td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td><strong>cov_axis</strong>(r[, axis])</td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cov_nugget</strong>(r)</td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><strong>cov_spatial</strong>(pos)</td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cov_yadrenko</strong>(zeta)</td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>covariance</strong>(r)</td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td><strong>default_arg_bounds()</strong></td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td><strong>default_opt_arg()</strong></td>
<td>Provide default optional arguments by the user.</td>
</tr>
<tr>
<td><strong>default_opt_arg_bounds()</strong></td>
<td>Provide default boundaries for optional arguments.</td>
</tr>
<tr>
<td><strong>default_rescale()</strong></td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td><strong>fit_variogram</strong>(x_data, y_data[, anis, sill, ...])</td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td><strong>fix_dim()</strong></td>
<td>Set a fix dimension for the model.</td>
</tr>
</tbody>
</table>

continues on next page
### Table 21 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>isometrize(pos)</code></td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td><code>ln_spectral_rad_pdf(r)</code></td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td><code>main_axes()</code></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><code>percentile_scale([per])</code></td>
<td>Calculate the percentile scale of the isotropic model.</td>
</tr>
<tr>
<td><code>plot([fnc])</code></td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td><code>pykrige_vario([args, r])</code></td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td><code>set_arg_bounds([check_args])</code></td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td><code>spectral_density(k)</code></td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td><code>spectral_rad_pdf(r)</code></td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td><code>var_factor()</code></td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td><code>vario_axis(r[, axis])</code></td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td><code>vario_nugget(r)</code></td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>vario_spatial(pos)</code></td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>vario_yadrenko(zeta)</code></td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>varioGram(r)</code></td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

### notes

- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

### Function description

- `anisometrize(pos)`
  Bring a position tuple into the anisotropic coordinate-system.

- `calc_integral_scale()`
  Calculate the integral scale of the isotropic model.

- `check_arg_bounds()`
  Check arguments to be within their given bounds.

- `check_dim(dim)`
  Linear model is only valid in 1D.

- `check_opt_arg()`
  Run checks for the optional arguments.
  This is in addition to the bound-checks

### Notes

- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

### Function

- `cor(h)`
  Linear normalized correlation function.

- `cor_axis(r, axis=0)`
  Correlation along axis of anisotropy.

- `cor_spatial(pos)`
  Spatial correlation respecting anisotropy and rotation.

- `cor_yadrenko(zeta)`
  Yadrenko correlation for great-circle distance from latlon-pos.

- `correlation(r)`
  Correlation function of the model.
**cov_axis** \( (r, \text{axis}=0) \)
Covariance along axis of anisotropy.

**cov_nugget** \( (r) \)
Isotropic covariance of the model respecting the nugget at \( r=0 \).

**cov_spatial** \( (\text{pos}) \)
Spatial covariance respecting anisotropy and rotation.

**cov_yadrenko** \( (\text{zeta}) \)
Yadrenko covariance for great-circle distance from latlon-pos.

**covariance** \( (r) \)
Covariance of the model.

**default_arg_bounds** ()
Provide default boundaries for arguments.
Given as a dictionary.

**default_opt_arg** ()
Provide default optional arguments by the user.
Should be given as a dictionary when overridden.

**default_opt_arg_bounds** ()
Provide default boundaries for optional arguments.

**default_rescale** ()
Provide default rescaling factor.

**fit_variogram** \( (x\_data, y\_data, \text{anis=}\text{True, sill=}\text{None, init\_guess=}'default', \text{weights=}\text{None, method=}'trf', \text{loss=}'soft\_I1', \text{max\_eval=}\text{None, return\_r2=}\text{False, curve\_fit\_kwargs=}\text{None, **para\_select}) \)
Fitting the variogram-model to an empirical variogram.

**Parameters**

- **x_data** (numpy.ndarray) – The bin-centers of the empirical variogram.
- **y_data** (numpy.ndarray) – The measured variogram. If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.
- **anis** (bool, optional) – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios won’t be altered during fitting. Default: True
- **sill** (float or bool, optional) – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:
  - \( \text{sill} = \text{var} + \text{nugget} \)
  - if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.
If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None
- **init_guess** (str or dict, optional) – Initial guess for the estimation. Either:
  - ”default”: using the default values of the covariance model (“len_scale” will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))
  - ”current”: using the current values of the covariance model
- `dict`: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above (“default” by default)) Example: {
  "len_scale": 10, "default": "current"
}

Default: “default”

- `weights (str, numpy.ndarray, callable, optional) – Weights applied to each point in the estimation. Either:
  - 'inv': inverse distance $1 / (x_{data} + 1)$
  - list: weights given per bin
  - callable: function applied to $x_{data}$

If callable, it must take a 1-d ndarray. Then weights = $f(x_{data})$. Default: None

- `method ({'trf', 'dogbox'}, optional) – Algorithm to perform minimization.
  - 'trf': Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - 'dogbox': dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

Default: ‘trf’

- `loss (str or callable, optional) – Determines the loss function in scipy’s curve_fit. The following keyword values are allowed:
  - 'linear' (default): $\rho(z) = z$. Gives a standard least-squares problem.
  - 'soft_l1': $\rho(z) = 2 + ((1 + z)^{0.5} - 1)$. The smooth approximation of L1 (absolute value) loss. Usually a good choice for robust least squares.
  - 'huber': $\rho(z) = z$ if $z \leq 1$ else $2z^{0.5} - 1$. Works similarly to ‘soft_l1’.
  - 'cauchy': $\rho(z) = \ln(1 + z)$. Severely weakens outliers influence, but may cause difficulties in optimization process.
  - 'arctan': $\rho(z) = \arctan(z)$. Limits a maximum loss on a single residual, has properties similar to ‘cauchy’.

If callable, it must take a 1-d ndarray $z=f**2$ and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_l1’

- `max_eval (int or None, optional) – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

- `return_r2 (bool, optional) – Whether to return the r2 score of the estimation.

Default: False

- `curve_fit_kwarg (dict, optional) – Other keyword arguments passed to scipy’s curve_fit.

Default: None

- **para_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters wont be fitted. By default, all parameters are fitted.

Returns

- `fit_para (dict) – Dictionary with the fitted parameter values`
• **pcov** (*numpy.ndarray*) – The estimated covariance of `popt` from `scipy.optimize.curve_fit`. To compute one standard deviation errors on the parameters use `perr = np.sqrt(np.diag(pcov))`.

• **r2_score** (*float*, optional) – r2 score of the curve fitting results. Only if `return_r2` is True.

### Notes

You can set the bounds for each parameter by accessing `CovModel.set_arg_bounds`. The fitted parameters will be instantly set in the model.

```python
fix_dim()
Set a fix dimension for the model.
```

```python
isometrize(pos)
Make a position tuple ready for isotropic operations.
```

```python
ln_spectral_rad_pdf(r)
Log radial spectral density of the model.
```

```python
main_axes()
Axes of the rotated coordinate-system.
```

```python
percentile_scale(per=0.9)
Calculate the percentile scale of the isotrope model.
This is the distance, where the given percentile of the variance is reached by the variogram
```

```python
plot(func='variogram', **kwargs)
Plot a function of a the CovModel.
```

### Parameters

• **func** (*str*, optional) – Function to be plotted. Could be one of:
  - ”variogram”
  - ”covariance”
  - ”correlation”
  - ”vario.spatial”
  - ”cov.spatial”
  - ”cor.spatial”
  - ”vario.yadrenko”
  - ”cov.yadrenko”
  - ”cor.yadrenko”
  - ”vario.axis”
  - ”cov.axis”
  - ”cor.axis”
  - ”spectrum”
  - ”spectral_density”
  - ”spectral_rad_pdf”

• **kwargs** – Keyword arguments forwarded to the plotting function “plot_” + `func` in `gstools.covmodel.plot`. 

See also:

`gstools.covmodel.plot`

**pykrige_vario** *(args=None, r=0)*
Isotropic variogram of the model for pykrige.

**set_arg_bounds** *(check_args=True, **kwargs)*
Set bounds for the parameters of the model.

**Parameters**

- **check_args** *(bool, optional)* – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True
- ****kwargs* – Parameter name as keyword (“var”, “len_scale”, “nugget”, <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of “oo”, “cc”, “oc” or “co” to define if the bounds are open (“o”) or closed (“c”).

**spectral_density** *(k)*
Spectral density of the covariance model.

This is given by:

\[
\hat{S}(k) = \frac{S(k)}{\sigma^2}
\]

Where \(S(k)\) is the spectrum of the covariance model.

**Parameters**

- **k** *(float)* – Radius of the phase: \(k = ||k||\)

**spectral_rad_pdf** *(r)*
Radial spectral density of the model.

**spectrum** *(k)*
Spectrum of the covariance model.

This is given by:

\[
S(k) = \left(\frac{1}{2\pi}\right)^n \int C(r)e^{ikr}d^n r
\]

Internally, this is calculated by the hankel transformation:

\[
S(k) = \left(\frac{1}{2\pi}\right)^n \cdot \left(\frac{2\pi}{kr^{n/2}}\right)^{n/2} \int_0^{\infty} r^{n/2} C(r)J_{n/2-1}(kr)dr
\]

Where \(C(r)\) is the covariance function of the model.

**Parameters**

- **k** *(float)* – Radius of the phase: \(k = ||k||\)

**var_factor** *
Factor for the variance.

**vario_axis** *(r, axis=0)*
Variogram along axis of anisotropy.

**vario_nugget** *(r)*
Isotropic variogram of the model respecting the nugget at r=0.

**vario_spatial** *(pos)*
Spatial variogram respecting anisotropy and rotation.

**vario_yadrenko** *(zeta)*
Yadrenko variogram for great-circle distance from latlon-pos.

**variogram** *(r)*
Isotropic variogram of the model.
**property angles**
Rotation angles (in rad) of the model.

Type `numpy.ndarray`

**property anis**
The anisotropy factors of the model.

Type `numpy.ndarray`

**property anis_bounds**
Bounds for the nugget.

Notes
Is a list of 2 or 3 values: `[a, b]` or `[a, b, <type>]` where `<type>` is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type `list`

**property arg**
Names of all arguments.

Type `list of str`

**property arg_bounds**
Bounds for all parameters.

Notes
Keys are the arg names and values are lists of 2 or 3 values: `[a, b]` or `[a, b, <type>]` where `<type>` is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type `dict`

**property arg_list**
Values of all arguments.

Type `list of float`

**property dim**
The dimension of the model.

Type `int`

**property dist_func**
pdf, cdf and ppf.

Spectral distribution info from the model.

Type `tuple of callable`

**property do_rotation**
State if a rotation is performed.

Type `bool`

**property field_dim**
The field dimension of the model.

Type `int`

**property hankel_kw**
hankel.SymmetricFourierTransform.kwarg.
Type `dict`  

**property has_cdf**  
State if a cdf is defined by the user.  
Type `bool`  

**property has_ppf**  
State if a ppf is defined by the user.  
Type `bool`  

**property integral_scale**  
The main integral scale of the model.  
Raises `ValueError` – If integral scale is not setable.  
Type `float`  

**property integral_scale_vec**  
The integral scales in each direction.  

```
Notes
This is calculated by:

- integral_scale_vec[0] = integral_scale
- integral_scale_vec[1] = integral_scale*anis[0]
```

Type `numpy.ndarray`  

**property is_isotropic**  
State if a model is isotropic.  
Type `bool`  

**property iso_arg**  
Names of isotropic arguments.  
Type `list of str`  

**property iso_arg_list**  
Values of isotropic arguments.  
Type `list of float`  

**property latlon**  
Whether the model depends on geographical coords.  
Type `bool`  

**property len_rescaled**  
The rescaled main length scale of the model.  
Type `float`  

**property len_scale**  
The main length scale of the model.  
Type `float`  

**property len_scale_bounds**  
Bounds for the length scale.  

```
Notes
```
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{type}]\) where \(\text{type}\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**property len_scale_vec**

The length scales in each direction.

**Notes**

This is calculated by:

- \(\text{len_scale_vec}[0] = \text{len_scale}\)
- \(\text{len_scale_vec}[1] = \text{len_scale} \times \text{anis}[0]\)
- \(\text{len_scale_vec}[2] = \text{len_scale} \times \text{anis}[1]\)

**Type** list

**property name**

The name of the CovModel class.

**Type** str

**property nugget**

The nugget of the model.

**Type** float

**property nugget_bounds**

Bounds for the nugget.

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{type}]\) where \(\text{type}\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list

**property opt_arg**

Names of the optional arguments.

**Type** list of str

**property opt_arg_bounds**

Bounds for the optional arguments.

**Notes**

Keys are the opt-arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, \text{type}]\) where \(\text{type}\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** dict

**property pykrige_angle**

2D rotation angle for pykrige.
property `pykrige_angle_x`
3D rotation angle around x for pykrige.

property `pykrige_angle_y`
3D rotation angle around y for pykrige.

property `pykrige_angle_z`
3D rotation angle around z for pykrige.

property `pykrige_anis`
2D anisotropy ratio for pykrige.

property `pykrige_anis_y`
3D anisotropy ratio in y direction for pykrige.

property `pykrige_anis_z`
3D anisotropy ratio in z direction for pykrige.

property `pykrige_kwargs`
Keyword arguments for pykrige routines.

property `rescale`
Rescale factor for the length scale of the model.

    Type float

property `sill`
The sill of the variogram.

    Notes
    This is calculated by:
    
    • sill = variance + nugget

    Type float

property `var`
The variance of the model.

    Type float

property `var_bounds`
Bounds for the variance.

    Notes
    Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

    Type list

property `var_raw`
The raw variance of the model without factor.

    (See. CovModel.var_factor)

    Type float
class gstools.covmodel.Circular(dim=3, var=1.0, len_scale=1.0, nugget=0.0, anis=1.0, angles=0.0, integral_scale=None, rescale=None, lat.lon=False, var_raw=None, hankel_kw=None, **opt_arg)

Bases: gstools.covmodel.base.CovModel

The circular covariance model.

This model is derived as the relative intersection area of two discs in 2D, where the middle points have a distance of $r$ and the diameters are given by $\ell$.

Notes

This model is given by the following correlation function [Webster2007]:

$$
\rho(r) = \begin{cases} 
\frac{2}{\pi} \left( \cos^{-1} \left( \frac{s \cdot r}{\ell} \right) - s \cdot \frac{r}{\ell} \sqrt{1 - \left( \frac{s \cdot r}{\ell} \right)^2} \right) & r < \frac{\ell}{s} \\
0 & r \geq \frac{\ell}{s}
\end{cases}
$$

Where the standard rescale factor is $s = 1$.

References

Parameters

- **dim** (int, optional) – dimension of the model. Default: 3
- **var** (float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- **len_scale** (float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, anis will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- **nugget** (float, optional) – nugget of the model. Default: 0.0
- **anis** (float or list, optional) – anisotropy ratios in the transversal directions [e_y, e_z].
  - e_y = l_y / l_x
  - e_z = l_z / l_x

If only one value is given in 3D, e_y will be set to 1. This value will be ignored, if multiple len_scales are given. Default: 1.0
- **angles** (float or list, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)

Default: 0.0
- **integral_scale** (float or list or None, optional) – If given, len_scale will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None
- **rescale** (float or None, optional) – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None
• **latlon** (bool, optional) – Whether the model is describing 2D fields on earth’s surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance $r$ will be replaced by $2 \sin(a/2)$, where $a$ is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, $dim$ will be set to 3 and anisotropy will be disabled. $rescale$ can be set to e.g. earth’s radius, to have a meaningful $len\_scale$ parameter. Default: False

• **var\_raw** (float or None, optional) – raw variance of the model which will be multiplied with CovModel.var_factor to result in the actual variance. If given, $var$ will be ignored. (This is just for models that override CovModel.var_factor) Default: None

• **hankel\_kw** (dict or None, optional) – Modify the init-arguments of hankel.SymmetricFourierTransform used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to ("a": -1, "b": 1, "N": 1000, "h": 0.001). Default: None

• **opt\_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section *Other Parameters*.

**Attributes**

- **angles** numpy.ndarray: Rotation angles (in rad) of the model.
- **anis** numpy.ndarray: The anisotropy factors of the model.
- **anis\_bounds** list: Bounds for the nugget.
- **arg** list of str: Names of all arguments.
- **arg\_bounds** dict: Bounds for all parameters.
- **arg\_list** list of float: Values of all arguments.
- **dim** int: The dimension of the model.
- **dist\_func** tuple of callable: pdf, cdf and ppf.
- **do\_rotation** bool: State if a rotation is performed.
- **field\_dim** int: The field dimension of the model.
- **hankel\_kw** dict: hankel.SymmetricFourierTransform kwargs.
- **has\_cdf** bool: State if a cdf is defined by the user.
- **has\_ppf** bool: State if a ppf is defined by the user.
- **integral\_scale** float: The main integral scale of the model.
- **integral\_scale\_vec** numpy.ndarray: The integral scales in each direction.
- **is\_isotropic** bool: State if a model is isotropic.
- **iso\_arg** list of str: Names of isotropic arguments.
- **iso\_arg\_list** list of float: Values of isotropic arguments.
- **latlon** bool: Whether the model depends on geographical coords.
- **len\_rescaled** float: The rescaled main length scale of the model.
- **len\_scale** float: The main length scale of the model.
- **len\_scale\_bounds** list: Bounds for the length scale.
- **len\_scale\_vec** numpy.ndarray: The length scales in each direction.
- **name** str: The name of the CovModel class.
- **nugget** float: The nugget of the model.
**nugget_bounds** list: Bounds for the nugget.

**opt_arg** list of str: Names of the optional arguments.

**opt_arg_bounds** dict: Bounds for the optional arguments.

**pykrige_angle** 2D rotation angle for pykrige.

**pykrige_angle_x** 3D rotation angle around x for pykrige.

**pykrige_angle_y** 3D rotation angle around y for pykrige.

**pykrige_angle_z** 3D rotation angle around z for pykrige.

**pykrige_anis** 2D anisotropy ratio for pykrige.

**pykrige_anis_y** 3D anisotropy ratio in y direction for pykrige.

**pykrige_anis_z** 3D anisotropy ratio in z direction for pykrige.

**pykrige_kwargs** Keyword arguments for pykrige routines.

**rescale** float: Rescale factor for the length scale of the model.

**sill** float: The sill of the variogram.

**var** float: The variance of the model.

**var_bounds** list: Bounds for the variance.

**var_raw** float: The raw variance of the model without factor.

## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>anisometrize</strong>(pos)</td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td><strong>calc_integral_scale</strong>()</td>
<td>Calculate the integral scale of the isotropic model.</td>
</tr>
<tr>
<td><strong>check_arg_bounds</strong>()</td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td><strong>check_dim</strong>(dim)</td>
<td>Circular model is only valid in 1D and 2D.</td>
</tr>
<tr>
<td><strong>check_opt_arg</strong></td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td><strong>cor</strong>(h)</td>
<td>Circular normalized correlation function.</td>
</tr>
<tr>
<td><strong>cor_axis</strong>(r[, axis])</td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cor_spatial</strong>(pos)</td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cor_yadrenko</strong>(zeta)</td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>correlation</strong>(r)</td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td><strong>cov_axis</strong>(r[, axis])</td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cov_nugget</strong>(r)</td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><strong>cov_spatial</strong>(pos)</td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cov_yadrenko</strong>(zeta)</td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>covariance</strong>(r)</td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td><strong>default_arg_bounds</strong>()</td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td><strong>default_opt_arg</strong></td>
<td>Provide default optional arguments by the user.</td>
</tr>
<tr>
<td><strong>default_opt_arg_bounds</strong>()</td>
<td>Provide default boundaries for optional arguments.</td>
</tr>
<tr>
<td><strong>default_rescale</strong>()</td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td><strong>fit_variogram</strong>(x_data, y_data[, anis, sill, ...])</td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td><strong>fix_dim</strong>()</td>
<td>Set a fix dimension for the model.</td>
</tr>
</tbody>
</table>
### Table 22 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>isometrize(pos)</code></td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td><code>ln_spectral_rad_pdf(r)</code></td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td><code>main_axes()</code></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><code>percentile_scale([per])</code></td>
<td>Calculate the percentile scale of the isotropic model.</td>
</tr>
<tr>
<td><code>plot([func])</code></td>
<td>Plot a function of the CovModel.</td>
</tr>
<tr>
<td><code>pykrige_vario([args, r])</code></td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td><code>set_arg_bounds([check_args])</code></td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td><code>spectral_density(k)</code></td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td><code>spectral_rad_pdf(r)</code></td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td><code>spectrum(k)</code></td>
<td>Spectrum of the covariance model.</td>
</tr>
<tr>
<td><code>var_factor()</code></td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td><code>vario_axis(r[, axis])</code></td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td><code>vario_nugget(r)</code></td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>vario_spatial(pos)</code></td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>vario_yadrenko(zeta)</code></td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>variogram(r)</code></td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

**anisometrize(pos)**

Bring a position tuple into the anisotropic coordinate-system.

**calc_integral_scale()**

Calculate the integral scale of the isotropic model.

**check_arg_bounds()**

Check arguments to be within their given bounds.

**check_dim(dim)**

Circular model is only valid in 1D and 2D.

**check_opt_arg()**

Run checks for the optional arguments.

This is in addition to the bound-checks

**Notes**

- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

**cor(h)**

Circular normalized correlation function.

**cor_axis(r, axis=0)**

Correlation along axis of anisotropy.

**cor_spatial(pos)**

Spatial correlation respecting anisotropy and rotation.

**cor_yadrenko(zeta)**

Yadrenko correlation for great-circle distance from latlon-pos.

**correlation(r)**

Correlation function of the model.
cov_axis \( (r, \text{axis}=0) \)
Covariance along axis of anisotropy.

cov_nugget \( (r) \)
Isotropic covariance of the model respecting the nugget at \( r=0 \).

cov.spatial \( \text{pos} \)
Spatial covariance respecting anisotropy and rotation.

cov_yadrenko \( (\text{zeta}) \)
Yadrenko covariance for great-circle distance from latlon-pos.

covariance \( (r) \)
Covariance of the model.

default_arg_bounds ()
Provide default boundaries for arguments.
Given as a dictionary.

default_opt_arg ()
Provide default optional arguments by the user.
Should be given as a dictionary when overridden.

default_opt_arg_bounds ()
Provide default boundaries for optional arguments.

default_rescale ()
Provide default rescaling factor.

fit_variogram \( (x_{\text{data}}, y_{\text{data}}, \text{anis}=\text{True}, \text{sill}=\text{None}, \text{init_guess}=\text{‘default’}, \text{weights}=\text{None}, \text{method}=\text{‘trf’}, \text{loss}=\text{‘soft_l1’}, \text{max_eval}=\text{None}, \text{return_r2}=\text{False}, \text{curve_fit_kwargs}=\text{None}, **\text{para_select}) \)
Fitting the variogram-model to an empirical variogram.

Parameters

\- x_data (numpy.ndarray) – The bin-centers of the empirical variogram.
\- y_data (numpy.ndarray) – The measured variogram If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.
\- anis (bool, optional) – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios wont be altered during fitting. Default: True
\- sill (float or bool, optional) – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:
  \- sill = var + nugget
  \- if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.
If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None
\- init_guess (str or dict, optional) – Initial guess for the estimation. Either:
  \- ”default”: using the default values of the covariance model (“len_scale” will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))
  \- ”current”: using the current values of the covariance model
GeoStatTools Documentation, Release 1.3.4

- dict: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above (“default” by default)) Example: \\
"len_scale": 10, "default": "current"

Default: “default”

- weights (str, numpy.ndarray, callable, optional) – Weights applied to each point in the estimation. Either:
  - 'inv': inverse distance 1 / (x_data + 1)
  - list: weights given per bin
  - callable: function applied to x_data

If callable, it must take a 1-d ndarray. Then weights = f(x_data). Default: None

- method ({'trf', 'dogbox'}, optional) – Algorithm to perform minimization.
  - 'trf': Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - 'dogbox': dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

Default: ‘trf’

- loss (str or callable, optional) – Determines the loss function in scipys curve_fit. The following keyword values are allowed:
  - 'linear' (default): \( \rho(z) = z \). Gives a standard least-squares problem.
  - 'soft_l1': \( \rho(z) = 2 + ((1 + z)^0.5 - 1) \). The smooth approximation of \( l_1 \) (absolute value) loss. Usually a good choice for robust least squares.
  - 'huber': \( \rho(z) = z \) if \( z \leq 1 \) else \( 2z^{0.5} - 1 \). Works similarly to ‘soft_l1’.
  - 'cauchy': \( \rho(z) = \ln(1 + z) \). Severely weakens outliers influence, but may cause difficulties in optimization process.
  - 'arctan': \( \rho(z) = \arctan(z) \). Limits a maximum loss on a single residual, has properties similar to ‘cauchy’.

If callable, it must take a 1-d ndarray \( z = f^2 \) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_l1’

- max_eval (int or None, optional) – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

- return_r2 (bool, optional) – Whether to return the r2 score of the estimation. Default: False

- curve_fit_kwarg (dict, optional) – Other keyword arguments passed to scipys curve_fit. Default: None

- **para_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters wont be fitted. By default, all parameters are fitted.

Returns

- fit_para (dict) – Dictionary with the fitted parameter values
• **pcov** *(numpy.ndarray)* – The estimated covariance of *popt* from *scipy.optimize.curve_fit*. To compute one standard deviation errors on the parameters use `perr = np.sqrt(np.diag(pcov))`.

• **r2_score** *(float, optional)* – *r2* score of the curve fitting results. Only if *return_r2* is True.

**Notes**

You can set the bounds for each parameter by accessing `CovModel.set_arg_bounds`. The fitted parameters will be instantly set in the model.

```python
fix_dim()
```

Set a fix dimension for the model.

```python
isometrize(pos)
```

Make a position tuple ready for isotropic operations.

```python
ln_spectral_rad_pdf(r)
```

Log radial spectral density of the model.

```python
main_axes()
```

Axes of the rotated coordinate-system.

```python
percentile_scale(per=0.9)
```

Calculate the percentile scale of the isotrope model.

This is the distance, where the given percentile of the variance is reached by the variogram.

```python
plot(func='variogram', **kwargs)
```

Plot a function of a the CovModel.

**Parameters**

• **func** *(str, optional)* – Function to be plotted. Could be one of:
  - ”variogram”
  - ”covariance”
  - ”correlation”
  - ”vario_spatial”
  - ”cov_spatial”
  - ”cor_spatial”
  - ”vario_yadrenko”
  - ”cov_yadrenko”
  - ”cor_yadrenko”
  - ”vario_axis”
  - ”cov_axis”
  - ”cor_axis”
  - ”spectrum”
  - ”spectral_density”
  - ”spectral_rad_pdf”

• **kwargs** – Keyword arguments forwarded to the plotting function “plot_” + *func* in *gstools.covmodel.plot*. 


pykrige_vario (args=None, r=0)
Isotropic variogram of the model for pykrige.

set_arg_bounds (check_args=True, **kwargs)
Set bounds for the parameters of the model.

Parameters
- **check_args (bool, optional)** – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True
- ****kwargs – Parameter name as keyword (“var”, “len_scale”, “nugget”, <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "oc", "co" or "cc" to define if the bounds are open (“o”) or closed (“c”).

spectral_density (k)
Spectral density of the covariance model.
This is given by:
\[ \hat{S}(k) = \frac{S(k)}{\sigma^2} \]
Where \( S(k) \) is the spectrum of the covariance model.

Parameters **k (float)** – Radius of the phase: \( k = ||k|| \)

spectral_rad_pdf (r)
Radial spectral density of the model.

spectrum (k)
Spectrum of the covariance model.
This is given by:
\[ S(k) = \left( \frac{1}{2\pi} \right)^n \int C(r) e^{ikr} r^nr \]
Internally, this is calculated by the hankel transformation:
\[ S(k) = \left( \frac{1}{2\pi} \right)^n \cdot \frac{(2\pi)^{n/2}}{k^{n/2-1}} \int_0^\infty r^{n/2} C(r) J_{n/2-1}(kr)dr \]
Where \( C(r) \) is the covariance function of the model.

Parameters **k (float)** – Radius of the phase: \( k = ||k|| \)

var_factor ()
Factor for the variance.

vario_axis (r, axis=0)
Variogram along axis of anisotropy.

vario_nugget (r)
Isotropic variogram of the model respecting the nugget at r=0.

vario.spatial (pos)
Spatial variogram respecting anisotropy and rotation.

vario_yadrenko (zeta)
Yadrenko variogram for great-circle distance from latlon-pos.

variogram (r)
Isotropic variogram of the model.
**property_angles**
Rotation angles (in rad) of the model.

_Type_ `numpy.ndarray`

**property anis**
The anisotropy factors of the model.

_Type_ `numpy.ndarray`

**property anis_bounds**
Bounds for the nugget.

_Notes_
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

_Type_ `list`

**property arg**
Names of all arguments.

_Type_ `list of str`

**property arg_bounds**
Bounds for all parameters.

_Notes_
Keys are the arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

_Type_ `dict`

**property arg_list**
Values of all arguments.

_Type_ `list of float`

**property dim**
The dimension of the model.

_Type_ `int`

**property dist_func**
pdf, cdf and ppf.
Spectral distribution info from the model.

_Type_ `tuple of callable`

**property do_rotation**
State if a rotation is performed.

_Type_ `bool`

**property field_dim**
The field dimension of the model.

_Type_ `int`

**property hankel_kw**
_hankel.SymmetricFourierTransform_ kwargs.
Type `dict`

**property has_cdf**
State if a cdf is defined by the user.
Type `bool`

**property has_ppf**
State if a ppf is defined by the user.
Type `bool`

**property integral_scale**
The main integral scale of the model.

*Raises* `ValueError` – If integral scale is not setable.
Type `float`

**property integral_scale_vec**
The integral scales in each direction.

**Notes**

This is calculated by:

- `integral_scale_vec[0] = integral_scale`
- `integral_scale_vec[1] = integral_scale*anis[0]`

Type `numpy.ndarray`

**property is_isotropic**
State if a model is isotropic.
Type `bool`

**property iso_arg**
Names of isotropic arguments.
Type `list of str`

**property iso_arg_list**
Values of isotropic arguments.
Type `list of float`

**property latlon**
Whether the model depends on geographical coords.
Type `bool`

**property len_rescaled**
The rescaled main length scale of the model.
Type `float`

**property len_scale**
The main length scale of the model.
Type `float`

**property len_scale_bounds**
Bounds for the length scale.

**Notes**
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(\text{<type>}\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** `list`

**property len_scale_vec**
The length scales in each direction.

**Notes**
This is calculated by:

- \(\text{len_scale_vec}[0] = \text{len_scale}\)
- \(\text{len_scale_vec}[1] = \text{len_scale} \times \text{anis}[0]\)
- \(\text{len_scale_vec}[2] = \text{len_scale} \times \text{anis}[1]\)

**Type** `numpy.ndarray`

**property name**
The name of the CovModel class.

**Type** `str`

**property nugget**
The nugget of the model.

**Type** `float`

**property nugget_bounds**
Bounds for the nugget.

**Notes**
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(\text{<type>}\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** `list`

**property opt_arg**
Names of the optional arguments.

**Type** `list of str`

**property opt_arg_bounds**
Bounds for the optional arguments.

**Notes**
Keys are the opt-arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(\text{<type>}\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** `dict`

**property pykrige_angle**
2D rotation angle for pykrige.
property pykrige_angle_x
3D rotation angle around x for pykrige.

property pykrige_angle_y
3D rotation angle around y for pykrige.

property pykrige_angle_z
3D rotation angle around z for pykrige.

property pykrige_anis
2D anisotropy ratio for pykrige.

property pykrige_anis_y
3D anisotropy ratio in y direction for pykrige.

property pykrige_anis_z
3D anisotropy ratio in z direction for pykrige.

property pykrige_kwargs
Keyword arguments for pykrige routines.

property rescale
Rescale factor for the length scale of the model.

    Type float

property sill
The sill of the variogram.

    Notes
This is calculated by:

    • sill = variance + nugget

    Type float

property var
The variance of the model.

    Type float

property var_bounds
Bounds for the variance.

    Notes
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

    Type list

property var_raw
The raw variance of the model without factor.

    (See. CovModel.var_factor)

    Type float
**gstools.covmodel.Spherical**

```python
class gstools.covmodel.Spherical(dim=3, var=1.0, len_scale=1.0, nugget=0.0, anis=1.0, angles=0.0, integral_scale=None, rescale=None, latlon=False, var_raw=None, hankel_kw=None, **opt_arg)
```

Bases: `gstools.covmodel.base.CovModel`

The Spherical covariance model.

This model is derived from the relative intersection area of two spheres in 3D, where the middle points have a distance of \( r \) and the diameters are given by \( \ell \).

**Notes**

This model is given by the following correlation function [Webster2007]:

\[
\rho(r) = \begin{cases} 
1 - \frac{3}{2} \cdot s \cdot \frac{r}{\ell} + \frac{1}{2} \cdot (s \cdot \frac{r}{\ell})^3 & r < \frac{\ell}{s} \\
0 & r \geq \frac{\ell}{s}
\end{cases}
\]

Where the standard rescale factor is \( s = 1 \).

**References**

**Parameters**

- `dim` (int, optional) – dimension of the model. Default: 3
- `var` (float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- `len_scale` (float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, `anis` will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- `nugget` (float, optional) – nugget of the model. Default: 0.0
- `anis` (float or list, optional) – anisotropy ratios in the transversal directions \([e_y, e_z]\).
  - \( e_y = l_y / l_x \)
  - \( e_z = l_z / l_x \)
  If only one value is given in 3D, \( e_y \) will be set to 1. This value will be ignored, if multiple `len_scales` are given. Default: 1.0
- `angles` (float or list, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)
  Default: 0.0
- `integral_scale` (float or list or None, optional) – If given, `len_scale` will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None
- `rescale` (float or None, optional) – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None
• **latlon** *(bool, optional)* – Whether the model is describing 2D fields on earth's surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance $r$ will be replaced by $2 \sin(\alpha/2)$, where $\alpha$ is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, $dim$ will be set to 3 and anisotropy will be disabled. $rescale$ can be set to e.g. earth’s radius, to have a meaningful $len\_scale$ parameter. Default: False

• **var\_raw** *(float or None, optional)* – raw variance of the model which will be multiplied with CovModel.var\_factor to result in the actual variance. If given, $var$ will be ignored. (This is just for models that override CovModel.var\_factor) Default: None

• **hankel\_kw** *(dict or None, optional)* – Modify the init-arguments of hankel. SymmetricFourierTransform used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to {"a": -1, "b": 1, "N": 1000, "h": 0.001}. Default: None

• **opt\_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section Other Parameters.

**Attributes**

- **angles** `numpy.ndarray`: Rotation angles (in rad) of the model.
- **anis** `numpy.ndarray`: The anisotropy factors of the model.
- **anis\_bounds** `list`: Bounds for the nugget.
- **arg** `list of str`: Names of all arguments.
- **arg\_bounds** `dict`: Bounds for all parameters.
- **arg\_list** `list of float`: Values of all arguments.
- **dim** `int`: The dimension of the model.
- **dist\_func** `tuple of callable`: pdf, cdf and ppf.
- **do\_rotation** `bool`: State if a rotation is performed.
- **field\_dim** `int`: The field dimension of the model.
- **hankel\_kw** `dict`: hankel.SymmetricFourierTransform\_kwargs.
- **has\_cdf** `bool`: State if a cdf is defined by the user.
- **has\_ppf** `bool`: State if a ppf is defined by the user.
- **integral\_scale** `float`: The main integral scale of the model.
- **integral\_scale\_vec** `numpy.ndarray`: The integral scales in each direction.
- **is\_isotropic** `bool`: State if a model is isotropic.
- **iso\_arg** `list of str`: Names of isotropic arguments.
- **iso\_arg\_list** `list of float`: Values of isotropic arguments.
- **latlon** `bool`: Whether the model depends on geographical coords.
- **len\_rescaled** `float`: The rescaled main length scale of the model.
- **len\_scale** `float`: The main length scale of the model.
- **len\_scale\_bounds** `list`: Bounds for the length scale.
- **len\_scale\_vec** `numpy.ndarray`: The length scales in each direction.
- **name** `str`: The name of the CovModel class.
- **nugget** `float`: The nugget of the model.
**nugget_bounds** list: Bounds for the nugget.

**opt_arg** list of str: Names of the optional arguments.

**opt_arg_bounds** dict: Bounds for the optional arguments.

**pykrige_angle** 2D rotation angle for pykrige.

**pykrige_angle_x** 3D rotation angle around x for pykrige.

**pykrige_angle_y** 3D rotation angle around y for pykrige.

**pykrige_angle_z** 3D rotation angle around z for pykrige.

**pykrige_anis** 2D anisotropy ratio for pykrige.

**pykrige_anis_y** 3D anisotropy ratio in y direction for pykrige.

**pykrige_anis_z** 3D anisotropy ratio in z direction for pykrige.

**pykrige_kwargs** Keyword arguments for pykrige routines.

**rescale** float: Rescale factor for the length scale of the model.

**sill** float: The sill of the variogram.

**var** float: The variance of the model.

**var_bounds** list: Bounds for the variance.

**var_raw** float: The raw variance of the model without factor.

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>anisometrize</strong>(pos)</td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td><strong>calc_integral_scale</strong>()</td>
<td>Calculate the integral scale of the isotropic model.</td>
</tr>
<tr>
<td><strong>check_arg_bounds</strong>()</td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td><strong>check_dim</strong>(dim)</td>
<td>Spherical model is only valid in 1D, 2D and 3D.</td>
</tr>
<tr>
<td><strong>check_opt_arg</strong>()</td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td><strong>cor</strong>(h)</td>
<td>Spherical normalized correlation function.</td>
</tr>
<tr>
<td><strong>cor_axis</strong>(r[, axis])</td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cor_spatial</strong>(pos)</td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cor_yadrenko</strong>(zeta)</td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>correlation</strong>(r)</td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td><strong>cov_axis</strong>(r[, axis])</td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cov_nugget</strong>(r)</td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><strong>cov_spatial</strong>(pos)</td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cov_yadrenko</strong>(zeta)</td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>covariance</strong>(r)</td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td><strong>default_arg_bounds</strong>()</td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td><strong>default_opt_arg</strong>()</td>
<td>Provide default optional arguments by the user.</td>
</tr>
<tr>
<td><strong>default_opt_arg_bounds</strong>()</td>
<td>Provide default boundaries for optional arguments.</td>
</tr>
<tr>
<td><strong>default_rescale</strong>()</td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td><strong>fit_variogram</strong>(x_data, y_data[, anis, sill, ...])</td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td><strong>fix_dim</strong>()</td>
<td>Set a fix dimension for the model.</td>
</tr>
</tbody>
</table>

continues on next page
Table 23 – continued from previous page

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>isometrize(pos)</code></td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td><code>ln_spectral_rad_pdf(r)</code></td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td><code>main_axes()</code></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><code>percentile_scale([per])</code></td>
<td>Calculate the percentile scale of the isotropy model.</td>
</tr>
<tr>
<td><code>plot(func)</code></td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td><code>pykrige_vario([args, r])</code></td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td><code>set_arg_bounds([check_args])</code></td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td><code>spectral_density(k)</code></td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td><code>spectral_rad_pdf(r)</code></td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td><code>var_factor()</code></td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td><code>vario_axis(r[, axis])</code></td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td><code>vario_nugget(r)</code></td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>vario_spatial(pos)</code></td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>vario_yadrenko(zeta)</code></td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>variogram(r)</code></td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

### Notes

- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

### Examples

- `cor(h)`
  Spherical normalized correlation function.
- `cor_axis(r, axis=0)`
  Correlation along axis of anisotropy.
- `cor_spatial(pos)`
  Spatial correlation respecting anisotropy and rotation.
- `cor_yadrenko(zeta)`
  Yadrenko correlation for great-circle distance from latlon-pos.
- `correlation(r)`
  Correlation function of the model.
GeoStatTools Documentation, Release 1.3.4

\texttt{cov\_axis}(r, axis=0)
Covariance along axis of anisotropy.

\texttt{cov\_nugget}(r)
Isotropic covariance of the model respecting the nugget at r=0.

\texttt{cov\_spatial}(pos)
Spatial covariance respecting anisotropy and rotation.

\texttt{cov\_yadrenko}(\texttt{zeta})
Yadrenko covariance for great-circle distance from latlon-pos.

\texttt{covariance}(r)
Covariance of the model.

\texttt{default\_arg\_bounds}()
Provide default boundaries for arguments.
Given as a dictionary.

\texttt{default\_opt\_arg}()
Provide default optional arguments by the user.
Should be given as a dictionary when overridden.

\texttt{default\_opt\_arg\_bounds}()
Provide default boundaries for optional arguments.

\texttt{default\_rescale}()
Provide default rescaling factor.

\texttt{fit\_variogram}(x\_data, y\_data, anis=True, sill=None, init\_guess='default', weights=None, method='trf', loss='soft_l1', max\_eval=None, return\_r2=False, curve\_fit\_kwargs=None, **para\_select)
Fiting the variogram-model to an empirical variogram.

Parameters

- \texttt{x\_data} (numpy.ndarray) – The bin-centers of the empirical variogram.
- \texttt{y\_data} (numpy.ndarray) – The measured variogram. If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.
- \texttt{anis} (bool, optional) – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios won’t be altered during fitting. Default: True
- \texttt{sill} (float or bool, optional) – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:
  - sill = var + nugget
  - if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.
  If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None
- \texttt{init\_guess} (str or dict, optional) – Initial guess for the estimation. Either:
  - “default”: using the default values of the covariance model (“len_scale” will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))
  - “current”: using the current values of the covariance model
- dict: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above (“default” by default)) Example: \{"len\_scale": 10, "default": "current"\}

Default: “default”

• weights (str, numpy.ndarray, callable, optional) – Weights applied to each point in the estimation. Either:
  - 'inv': inverse distance \(1 / (x\_data + 1)\)
  - list: weights given per bin
  - callable: function applied to x_data

If callable, it must take a 1-d ndarray. Then weights = f(x_data). Default: None

• method (\{'trf', 'dogbox'\}, optional) – Algorithm to perform minimization.
  - 'trf': Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - 'dogbox': dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

Default: ‘trf’

• loss (str or callable, optional) – Determines the loss function in scipy's curve_fit. The following keyword values are allowed:
  - 'linear' (default): \(\rho(z) = z\). Gives a standard least-squares problem.
  - 'soft\_l1': \(\rho(z) = 2 + ((1 + z)**0.5 - 1)\). The smooth approximation of l1 (absolute value) loss. Usually a good choice for robust least squares.
  - 'huber': \(\rho(z) = z\) if \(z \leq 1\) else \(2z**0.5 - 1\). Works similarly to ‘soft\_l1’.
  - 'cauchy': \(\rho(z) = \ln(1 + z)\). Severely weakens outliers influence, but may cause difficulties in optimization process.
  - 'arctan': \(\rho(z) = \arctan(z)\). Limits a maximum loss on a single residual, has properties similar to ‘cauchy’.

If callable, it must take a 1-d ndarray \(z=f**2\) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft\_l1’

• max_eval (int or None, optional) – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

• return\_r2 (bool, optional) – Whether to return the r2 score of the estimation. Default: False

• curve\_fit\_kwarg (dict, optional) – Other keyword arguments passed to scipy's curve_fit. Default: None

• **para\_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters wont be fitted. By default, all parameters are fitted.

Returns

• fit\_para (dict) – Dictionary with the fitted parameter values
• **pcov** *(numpy.ndarray)* – The estimated covariance of *popt* from *scipy.optimize.curve_fit*. To compute one standard deviation errors on the parameters use *perr = np.sqrt(np.diag(pcov))*.

• **r2_score** *(float, optional)* – r2 score of the curve fitting results. Only if *return_r2* is True.

---

**Notes**

You can set the bounds for each parameter by accessing *CovModel.set_arg_bounds*. The fitted parameters will be instantly set in the model.

---

**fix_dim()**

Set a fix dimension for the model.

**isometrize**(pos)

Make a position tuple ready for isotropic operations.

**ln_spectral_rad_pdf**(r)

Log radial spectral density of the model.

**main_axes()**

Axes of the rotated coordinate-system.

**percentile_scale**(per=0.9)

Calculate the percentile scale of the isotrope model.

This is the distance, where the given percentile of the variance is reached by the variogram.

**plot**(func='variogram', **kwargs)

Plot a function of a the CovModel.

**Parameters**

• **func** *(str, optional)* – Function to be plotted. Could be one of:
  - "variogram"
  - "covariance"
  - "correlation"
  - "vario_spatial"
  - "cov_spatial"
  - "cor_spatial"
  - "vario_yadrenko"
  - "cov_yadrenko"
  - "cor_yadrenko"
  - "vario_axis"
  - "cov_axis"
  - "cor_axis"
  - "spectrum"
  - "spectral_density"
  - "spectral_rad_pdf"

• **kwargs** – Keyword arguments forwarded to the plotting function "plot_" + *func* in *gstools.covmodel.plot*. 

---

238 Chapter 3. GSTools API
See also:

gstools.covmodel.plot

`pykrige_vario (args=None, r=0)`
Isotropic variogram of the model for pykrige.

`set_arg_bounds (check_args=True, **kwargs)`
Set bounds for the parameters of the model.

**Parameters**

- `check_args (bool, optional)` — Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True
- `**kwargs` — Parameter name as keyword ("var", “len_scale”, “nugget”, <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

`spectral_density (k)`
Spectral density of the covariance model.

This is given by:

\[
\tilde{S}(k) = \frac{S(k)}{\sigma^2}
\]

Where \( S(k) \) is the spectrum of the covariance model.

**Parameters**

- `k (float)` — Radius of the phase: \( k = ||k|| \)

`spectral_rad_pdf (r)`
Radial spectral density of the model.

`spectrum (k)`
Spectrum of the covariance model.

This is given by:

\[
S(k) = \left( \frac{1}{2\pi} \right)^n \int C(r) e^{ikr} r^ndr
\]

Internally, this is calculated by the hankel transformation:

\[
S(k) = \left( \frac{1}{2\pi} \right)^n \cdot \frac{(2\pi)^{n/2}}{K^{n/2-1}} \int_0^\infty r^{n/2} C(r) J_{n/2-1}(kr) dr
\]

Where \( C(r) \) is the covariance function of the model.

**Parameters**

- `k (float)` — Radius of the phase: \( k = ||k|| \)

`var_factor ()`
Factor for the variance.

`vario_axis (r, axis=0)`
Variogram along axis of anisotropy.

`vario_nugget (r)`
Isotropic variogram of the model respecting the nugget at r=0.

`vario_spatial (pos)`
Spatial variogram respecting anisotropy and rotation.

`vario_yadrenko (zeta)`
Yadrenko variogram for great-circle distance from latlon-pos.

`variogram (r)`
Isotropic variogram of the model.
property angles
Rotation angles (in rad) of the model.
    Type numpy.ndarray

property anis
The anisotropy factors of the model.
    Type numpy.ndarray

property anis_bounds
Bounds for the nugget.

    Notes
    Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

    Type list

property arg
Names of all arguments.
    Type list of str

property arg_bounds
Bounds for all parameters.

    Notes
    Keys are the arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

    Type dict

property arg_list
Values of all arguments.
    Type list of float

property dim
The dimension of the model.
    Type int

property dist_func
pdf, cdf and ppf.
    Spectral distribution info from the model.
    Type tuple of callable

property do_rotation
State if a rotation is performed.
    Type bool

property field_dim
The field dimension of the model.
    Type int

property hankel_kw
hankel.SymmetricFourierTransform kwargs.
property has_cdf
    State if a cdf is defined by the user.
    Type bool

property has_ppf
    State if a ppf is defined by the user.
    Type bool

property integral_scale
    The main integral scale of the model.
    Raises ValueError – If integral scale is not setable.
    Type float

property integral_scale_vec
    The integral scales in each direction.
    
    Notes
    This is calculated by:
    
    * integral_scale_vec[0] = integral_scale
    * integral_scale_vec[1] = integral_scale*anis[0]

    Type numpy.ndarray

property is_isotropic
    State if a model is isotropic.
    Type bool

property iso_arg
    Names of isotropic arguments.
    Type list of str

property iso_arg_list
    Values of isotropic arguments.
    Type list of float

property latlon
    Whether the model depends on geographical coords.
    Type bool

property len_rescaled
    The rescaled main length scale of the model.
    Type float

property len_scale
    The main length scale of the model.
    Type float

property len_scale_bounds
    Bounds for the length scale.
    
    Notes
Is a list of 2 or 3 values: \( [a, b] \) or \( [a, b, \text{<type>}] \) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** `list`

**property len_scale_vec**
The length scales in each direction.

**Notes**
This is calculated by:

- \( \text{len_scale_vec}[0] = \text{len_scale} \)
- \( \text{len_scale_vec}[1] = \text{len_scale} \cdot \text{anis}[0] \)
- \( \text{len_scale_vec}[2] = \text{len_scale} \cdot \text{anis}[1] \)

**Type** `numpy.ndarray`

**property name**
The name of the CovModel class.

**Type** `str`

**property nugget**
The nugget of the model.

**Type** `float`

**property nugget_bounds**
Bounds for the nugget.

**Notes**
Is a list of 2 or 3 values: \( [a, b] \) or \( [a, b, \text{<type>}] \) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** `list`

**property opt_arg**
Names of the optional arguments.

**Type** `list` of `str`

**property opt_arg_bounds**
Bounds for the optional arguments.

**Notes**
Keys are the opt-arg names and values are lists of 2 or 3 values: \( [a, b] \) or \( [a, b, \text{<type>}] \) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** `dict`

**property pykrige_angle**
2D rotation angle for pykrige.
property pykrige_angle_x
3D rotation angle around x for pykrige.

property pykrige_angle_y
3D rotation angle around y for pykrige.

property pykrige_angle_z
3D rotation angle around z for pykrige.

property pykrige_anis
2D anisotropy ratio for pykrige.

property pykrige_anis_y
3D anisotropy ratio in y direction for pykrige.

property pykrige_anis_z
3D anisotropy ratio in z direction for pykrige.

property pykrige_kwargs
Keyword arguments for pykrige routines.

property rescale
Rescale factor for the length scale of the model.

Type float

property sill
The sill of the variogram.

Notes
This is calculated by:

```
• sill = variance + nugget
```

Type float

property var
The variance of the model.

Type float

property var_bounds
Bounds for the variance.

Notes
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type list

property var_raw
The raw variance of the model without factor.

(See. CovModel.var_factor)

Type float
The Hyper-Spherical covariance model.

This model is derived from the relative intersection area of two d-dimensional hyperspheres, where the middle points have a distance of $r$ and the diameters are given by $\ell$.

In 1D this is the Linear model, in 2D the Circular model and in 3D the Spherical model.

Notes

This model is given by the following correlation function [Matern1960]:

$$\rho(r) = \begin{cases} 1 - s \cdot \frac{r}{\ell}, & \frac{\pi}{2} \cdot \text{F}_1(\frac{1}{2}, -\frac{d-1}{2}, \frac{(s \cdot r)^2}{\ell^2}) \quad r < \frac{\ell}{s} \\ 0, & r \geq \frac{\ell}{s} \end{cases}$$

Where the standard rescale factor is $s = 1$. $d$ is the dimension.

References

Parameters

- **dim**(int, optional) – dimension of the model. Default: 3
- **var**(float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- **len_scale**(float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, *anis* will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- **nugget**(float, optional) – nugget of the model. Default: 0.0
- **anis**(float or list, optional) – anisotropy ratios in the transversal directions $[e_y, e_z]$.
  - $e_y = l_y / l_x$
  - $e_z = l_z / l_x$

If only one value is given in 3D, $e_y$ will be set to 1. This value will be ignored, if multiple len_scales are given. Default: 1.0
- **angles**(float or list, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)

  Default: 1.0
- **integral_scale**(float or list or None, optional) – If given, len_scale will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None
• **rescale** *(float or None, optional)* – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None

• **latlon** *(bool, optional)* – Whether the model is describing 2D fields on earth's surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance $r$ will be replaced by $2 \sin(\alpha/2)$, where $\alpha$ is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, $dim$ will be set to 3 and anisotropy will be disabled. $rescale$ can be set to e.g. earth's radius, to have a meaningful $len_scale$ parameter. Default: False

• **var_raw** *(float or None, optional)* – raw variance of the model which will be multiplied with $CovModel.var_factor$ to result in the actual variance. If given, var will be ignored. (This is just for models that override $CovModel.var_factor$) Default: None

• **hankel_kw** *(dict or None, optional)* – Modify the init-arguments of hankel. SymmetricFourierTransform used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to {"a": -1, "b": 1, "N": 1000, "h": 0.001}. Default: None

• **opt_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section Other Parameters.

**Attributes**

- **angles** `numpy.ndarray`: Rotation angles (in rad) of the model.
- **anis** `numpy.ndarray`: The anisotropy factors of the model.
- **anis_bounds** `list`: Bounds for the nugget.
- **arg** `list of str`: Names of all arguments.
- **arg_bounds** `dict`: Bounds for all parameters.
- **arg_list** `list of float`: Values of all arguments.
- **dim** `int`: The dimension of the model.
- **dist_func** `tuple of callable`: pdf, cdf and ppf.
- **do_rotation** `bool`: State if a rotation is performed.
- **field_dim** `int`: The field dimension of the model.
- **hankel_kw** `dict`: hankel.SymmetricFourierTransform kwargs.
- **has_cdf** `bool`: State if a cdf is defined by the user.
- **has_ppf** `bool`: State if a ppf is defined by the user.
- **integral_scale** `float`: The main integral scale of the model.
- **integral_scale_vec** `numpy.ndarray`: The integral scales in each direction.
- **is_isotropic** `bool`: State if a model is isotropic.
- **iso_arg** `list of str`: Names of isotropic arguments.
- **iso_arg_list** `list of float`: Values of isotropic arguments.
- **latlon** `bool`: Whether the model depends on geographical coords.
- **len_rescaled** `float`: The rescaled main length scale of the model.
- **len_scale** `float`: The main length scale of the model.
- **len_scale_bounds** `list`: Bounds for the length scale.
**len_scale_vec** `numpy.ndarray`: The length scales in each direction.

**name** `str`: The name of the CovModel class.

**nugget** `float`: The nugget of the model.

**nugget_bounds** `list`: Bounds for the nugget.

**opt_arg** `list of str`: Names of the optional arguments.

**opt_arg_bounds** `dict`: Bounds for the optional arguments.

**pykrige_angle** `2D rotation angle for pykrige.`

**pykrige_angle_x** `3D rotation angle around x for pykrige.`

**pykrige_angle_y** `3D rotation angle around y for pykrige.`

**pykrige_angle_z** `3D rotation angle around z for pykrige.`

**pykrige_anis** `2D anisotropy ratio for pykrige.`

**pykrige_anis_y** `3D anisotropy ratio in y direction for pykrige.`

**pykrige_anis_z** `3D anisotropy ratio in z direction for pykrige.`

**pykrige_kwargs** `Keyword arguments for pykrige routines.`

**rescale** `float`: Rescale factor for the length scale of the model.

**sill** `float`: The sill of the variogram.

**var** `float`: The variance of the model.

**var_bounds** `list`: Bounds for the variance.

**var_raw** `float`: The raw variance of the model without factor.

---

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anisometrize(pos)</td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td>calc_integral_scale()</td>
<td>Calculate the integral scale of the isotrope model.</td>
</tr>
<tr>
<td>check_arg_bounds()</td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td>check_dim(dim)</td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td>check_opt_arg()</td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td>cor(h)</td>
<td>Hyper-Spherical normalized correlation function.</td>
</tr>
<tr>
<td>cor_axis(r[, axis])</td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td>cor_spatial(pos)</td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cor_yadrenko(zeta)</td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>correlation(r)</td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td>cov_axis(r[, axis])</td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td>cov_nugget(r)</td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td>cov_spatial(pos)</td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cov_yadrenko(zeta)</td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>covariance(r)</td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td>default_arg_bounds()</td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td>default_opt_arg()</td>
<td>Provide default optional arguments by the user.</td>
</tr>
<tr>
<td>default_opt_arg_bounds()</td>
<td>Provide default boundaries for optional arguments.</td>
</tr>
</tbody>
</table>

*continues on next page*
Table 24 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default_rescale()</td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td>fit_variogram(x_data, y_data[, anis, sill, ...])</td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td>fix_dim()</td>
<td>Set a fix dimension for the model.</td>
</tr>
<tr>
<td>isometrize(pos)</td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td>ln_spectral_rad_pdf(r)</td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td>main_axes()</td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td>percentile_scale([per])</td>
<td>Calculate the percentile scale of the isotropic model.</td>
</tr>
<tr>
<td>plot([func])</td>
<td>Plot a function of the CovModel.</td>
</tr>
<tr>
<td>pykrige_vario([args, r])</td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td>set_arg_bounds([check_args])</td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td>spectral_density(k)</td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td>spectral_rad_pdf(r)</td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td>spectrum(k)</td>
<td>Spectrum of the covariance model.</td>
</tr>
<tr>
<td>var_factor()</td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td>vario_axis(r[, axis])</td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td>vario_nugget(r)</td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td>vario_spatial(pos)</td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>vario_yadrenko(zeta)</td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>variogram(r)</td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

anisometrize(pos)
Bring a position tuple into the anisotropic coordinate-system.

calc_integral_scale()
Calculate the integral scale of the isotropic model.

check_arg_bounds()
Check arguments to be within their given bounds.

check_dim(dim)
Check the given dimension.

check_opt_arg()
Run checks for the optional arguments.

This is in addition to the bound-checks

Notes

- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

cor(h)
Hyper-Spherical normalized correlation function.

cor_axis(r, axis=0)
Correlation along axis of anisotropy.

cor_spatial(pos)
Spatial correlation respecting anisotropy and rotation.
**cor_yadrenko** *(zeta)*
Yadrenko correlation for great-circle distance from latlon-pos.

**correlation** *(r)*
Correlation function of the model.

**cov_axis** *(r, axis=0)*
Covariance along axis of anisotropy.

**cov_nugget** *(r)*
Isotropic covariance of the model respecting the nugget at r=0.

**cov_spatial** *(pos)*
Spatial covariance respecting anisotropy and rotation.

**cov_yadrenko** *(zeta)*
Yadrenko covariance for great-circle distance from latlon-pos.

**covariance** *(r)*
Covariance of the model.

**default_arg_bounds()**
Provide default boundaries for arguments.
Given as a dictionary.

**default_opt_arg()**
Provide default optional arguments by the user.
Should be given as a dictionary when overridden.

**default_opt_arg_bounds()**
Provide default boundaries for optional arguments.

**default_rescale()**
Provide default rescaling factor.

**fit_variogram** *(x_data, y_data, anis=True, sill=None, init_guess='default', weights=None, method='trf', loss='soft_l1', max_eval=None, return_r2=False, curve_fit_kwargs=None, **para_select)*
Fitting the variogram-model to an empirical variogram.

**Parameters**

- **x_data** *(numpy.ndarray)* – The bin-centers of the empirical variogram.
- **y_data** *(numpy.ndarray)* – The measured variogram. If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.
- **anis** *(bool, optional)* – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios won’t be altered during fitting. Default: True
- **sill** *(float or bool, optional)* – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:
  - sill = var + nugget
  - if the variance is bigger than the sill, the nugget will be set to its lower bound and the variance will be set to the fitting partial sill.
  
  If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None
- **init_guess** *(str or dict, optional)* – Initial guess for the estimation. Either:
- "default": using the default values of the covariance model ("len_scale" will be mean of given bin centers; "var" and "nugget" will be mean of given variogram values (if in given bounds))
- "current": using the current values of the covariance model
- dict: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above ("default" by default)) Example: {"len_scale": 10, "default": "current"}
Default: “default”

- weights (str, numpy.ndarray, callable, optional) – Weights applied to each point in the estimation. Either:
  - 'inv': inverse distance 1 / (x_data + 1)
  - list: weights given per bin
  - callable: function applied to x_data
If callable, it must take a 1-d ndarray. Then weights = f(x_data). Default: None

- method (str, 'trf', 'dogbox', optional) – Algorithm to perform minimization.
  - 'trf': Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - 'dogbox': dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.
Default: ‘trf’

- loss (str or callable, optional) – Determines the loss function in scipys curve_fit. The following keyword values are allowed:
  - 'linear' (default): \( \rho(z) = z \). Gives a standard least-squares problem.
  - 'soft_l1': \( \rho(z) = 2 \times ((1 + z)^{0.5} - 1) \). The smooth approximation of L1 (absolute value) loss. Usually a good choice for robust least squares.
  - 'huber': \( \rho(z) = z \text{ if } z \leq 1 \text{ else } 2z^{0.5} - 1 \). Works similarly to ‘soft_l1’.
  - 'cauchy': \( \rho(z) = \ln(1 + z) \). Severely weakens outliers influence, but may cause difficulties in optimization process.
  - 'arctan': \( \rho(z) = \arctan(z) \). Limits a maximum loss on a single residual, has properties similar to ‘cauchy’.
If callable, it must take a 1-d ndarray z=f**2 and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_l1’

- max_eval (int or None, optional) – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

- return_r2 (bool, optional) – Whether to return the r2 score of the estimation. Default: False

- curve_fit_kwargs (dict, optional) – Other keyword arguments passed to scipys curve_fit. Default: None

- **para_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each
parameter. Then these values will be applied and the involved parameters wont be fitted. By default, all parameters are fitted.

Returns

- **fit_para** *(dict)* – Dictionary with the fitted parameter values
- **pcov** *(numpy.ndarray)* – The estimated covariance of \( popt \) from \texttt{scipy.optimize.curve_fit}. To compute one standard deviation errors on the parameters use \( \texttt{perr} = \texttt{np.sqrt(np.diag(pcov))} \).
- **r2_score** *(float, optional)* – \( r^2 \) score of the curve fitting results. Only if return_r2 is True.

Notes

You can set the bounds for each parameter by accessing \texttt{CovModel.set_arg_bounds}.
The fitted parameters will be instantly set in the model.

**fix_dim()**
Set a fix dimension for the model.

**isometrize(pos)**
Make a position tuple ready for isotropic operations.

**ln_spectral_rad_pdf(r)**
Log radial spectral density of the model.

**main_axes()**
Axes of the rotated coordinate-system.

**percentile_scale(per=0.9)**
Calculate the percentile scale of the isotrope model. This is the distance, where the given percentile of the variance is reached by the variogram

**plot(func='variogram', **kwargs)**
Plot a function of a the CovModel.

Parameters

- **func** *(str, optional)* – Function to be plotted. Could be one of:
  - "variogram"
  - "covariance"
  - "correlation"
  - "vario.spatial"
  - "cov.spatial"
  - "cor.spatial"
  - "vario_yadrenko"
  - "cov_yadrenko"
  - "cor_yadrenko"
  - "vario_axis"
  - "cov_axis"
  - "cor_axis"
  - "spectrum"
  - "spectral_density"
• "spectral_rad_pdf"

  • **kwargs – Keyword arguments forwarded to the plotting function “plot_” + func in gstools.covmodel.plot.

See also:

gstools.covmodel.plot

pykrige_vario (args=None, r=0)
Isotropic variogram of the model for pykrige.

set_arg_bounds (check_args=True, **kwargs)
Set bounds for the parameters of the model.

Parameters

  • check_args (bool, optional) – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True

  • **kwargs – Parameter name as keyword (“var”, “len_scale”, “nugget”, <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

spectral_density (k)
Spectral density of the covariance model.
This is given by:

\[ \tilde{S}(k) = \frac{S(k)}{\sigma^2} \]

Where \( S(k) \) is the spectrum of the covariance model.

Parameters k (float) – Radius of the phase: \( k = ||k|| \)

spectral_rad_pdf (r)
Radial spectral density of the model.

spectrum (k)
Spectrum of the covariance model.
This is given by:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \int C(r)e^{ikr} d^n r \]

Internally, this is calculated by the hankel transformation:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \cdot \frac{(2\pi)^{n/2}}{k^{n/2-1}} \int_0^\infty r^{n/2}C(r)J_{n/2-1}(kr)dr \]

Where \( C(r) \) is the covariance function of the model.

Parameters k (float) – Radius of the phase: \( k = ||k|| \)

var_factor ()
Factor for the variance.

vario_axis (r, axis=0)
Variogram along axis of anisotropy.

vario_nugget (r)
Isotropic variogram of the model respecting the nugget at r=0.

vario_spatial (pos)
Spatial variogram respecting anisotropy and rotation.

vario_yadrenko (zeta)
Yadrenko variogram for great-circle distance from latlon-pos.
**variogram** \((r)\)
Isotropic variogram of the model.

**property angles**
Rotation angles (in rad) of the model.

  Type `numpy.ndarray`

**property anis**
The anisotropy factors of the model.

  Type `numpy.ndarray`

**property anis_bounds**
Bounds for the nugget.

**Notes**
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{ <type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

  Type `list`

**property arg**
Names of all arguments.

  Type `list of str`

**property arg_bounds**
Bounds for all parameters.

**Notes**
Keys are the arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, \text{ <type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

  Type `dict`

**property arg_list**
Values of all arguments.

  Type `list of float`

**property dim**
The dimension of the model.

  Type `int`

**property dist_func**
pdf, cdf and ppf.
Spectral distribution info from the model.

  Type `tuple of callable`

**property do_rotation**
State if a rotation is performed.

  Type `bool`

**property field_dim**
The field dimension of the model.

  Type `int`
property hankel_kw
    Hankel.SymmetricFourierTransform kwarg.
    
    Type dict

property has_cdf
    State if a cdf is defined by the user.
    
    Type bool

property has_ppf
    State if a ppf is defined by the user.
    
    Type bool

property integral_scale
    The main integral scale of the model.
    
    Raises ValueError – If integral scale is not setable.
    
    Type float

property integral_scale_vec
    The integral scales in each direction.
    
    Notes
    This is calculated by:
    
    • integral_scale_vec[0] = integral_scale
    • integral_scale_vec[1] = integral_scale*anis[0]
    
    Type numpy.ndarray

property is_isotropic
    State if a model is isotropic.
    
    Type bool

property iso_arg
    Names of isotropic arguments.
    
    Type list of str

property iso_arg_list
    Values of isotropic arguments.
    
    Type list of float

property latlon
    Whether the model depends on geographical coords.
    
    Type bool

property len_rescaled
    The rescaled main length scale of the model.
    
    Type float

property len_scale
    The main length scale of the model.
    
    Type float
property `len_scale_bounds`

Bounds for the length scale.

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** `list`

property `len_scale_vec`

The length scales in each direction.

**Notes**

This is calculated by:

- `len_scale_vec[0] = len_scale`
- `len_scale_vec[1] = len_scale*anis[0]`

**Type** `numpy.ndarray`

property `name`

The name of the CovModel class.

**Type** `str`

property `nugget`

The nugget of the model.

**Type** `float`

property `nugget_bounds`

Bounds for the nugget.

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** `list`

property `opt_arg`

Names of the optional arguments.

**Type** `list of str`

property `opt_arg_bounds`

Bounds for the optional arguments.

**Notes**

Keys are the opt-arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").
Type `dict`

**property pykrige_angle**
2D rotation angle for pykrige.

**property pykrige_angle_x**
3D rotation angle around x for pykrige.

**property pykrige_angle_y**
3D rotation angle around y for pykrige.

**property pykrige_angle_z**
3D rotation angle around z for pykrige.

**property pykrige_anis**
2D anisotropy ratio for pykrige.

**property pykrige_anis_y**
3D anisotropy ratio in y direction for pykrige.

**property pykrige_anis_z**
3D anisotropy ratio in z direction for pykrige.

**property pykrige_kwargs**
Keyword arguments for pykrige routines.

**property rescale**
Rescale factor for the length scale of the model.

Type `float`

**property sill**
The sill of the variogram.

Notes
This is calculated by:

- \[ \text{sill} = \text{variance} + \text{nugget} \]

Type `float`

**property var**
The variance of the model.

Type `float`

**property var_bounds**
Bounds for the variance.

Notes
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type `list`

**property var_raw**
The raw variance of the model without factor.

(See. CovModel.var_factor)

Type `float`
class gstools.covmodel.SuperSpherical (dim=3, var=1.0, len_scale=1.0, nugget=0.0, anis=1.0, angles=0.0, integral_scale=None, rescale=None, latlon=False, var_raw=None, hankel_kw=None, **opt_arg)

Bases: gstools.covmodel.base.CovModel

The Super-Spherical covariance model.

This model is derived from the relative intersection area of two d-dimensional hyperspheres, where the middle points have a distance of \( r \) and the diameters are given by \( \ell \). It is than valid in all lower dimensions. By default it coincides with the Hyper-Spherical model.

Notes

This model is given by the following correlation function [Matern1960]:

\[
\rho(r) = \begin{cases} 
1 - s \cdot \frac{r}{\ell} \cdot \frac{\text{Hypergeometric}_2(\frac{\nu}{2}, \frac{3}{2}, \frac{(s \cdot r)^2}{\ell^2})}{\text{Hypergeometric}_2(\frac{\nu}{2}, \frac{3}{2}, 1)} & r < \frac{\ell}{s} \\
0 & r \geq \frac{\ell}{s}
\end{cases}
\]

Where the standard rescale factor is \( s = 1 \). \( \nu \geq \frac{d-1}{2} \) is a shape parameter.

References

Other Parameters nu (float, optional) – Shape parameter. Standard range: \([\frac{(\text{dim}-1)}{2}, 50]\) Default: \(\frac{(\text{dim}-1)}{2}\)

Parameters

- dim (int, optional) – dimension of the model. Default: 3
- var (float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- len_scale (float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, anis will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- nugget (float, optional) – nugget of the model. Default: 0.0
- anis (float or list, optional) – anisotropy ratios in the transversal directions \([e_y, e_z]\).  
  - \( e_y = \frac{l_y}{l_x} \)
  - \( e_z = \frac{l_z}{l_x} \)
  If only one value is given in 3D, \( e_y \) will be set to 1. This value will be ignored, if multiple len_scales are given. Default: 1.0
- angles (float or list, optional) – angles of rotation (given in rad):  
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)
  Default: 0.0
- integral_scale (float or list or None, optional) – If given, len_scale will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None
• **rescale** *(float or None, optional)* – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None

• **latlon** *(bool, optional)* – Whether the model is describing 2D fields on earth’s surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance $r$ will be replaced by $2 \sin(\alpha/2)$, where $\alpha$ is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, $dim$ will be set to 3 and anisotropy will be disabled. `rescale` can be set to e.g. earth’s radius, to have a meaningful `len_scale` parameter. Default: False

• **var_raw** *(float or None, optional)* – raw variance of the model which will be multiplied with `CovModel.var_factor` to result in the actual variance. If given, `var` will be ignored. (This is just for models that override `CovModel.var_factor`) Default: None

• **hankel_kw** *(dict or None, optional)* – Modify the init-arguments of `hankel.SymmetricFourierTransform` used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to `{"a": -1, "b": 1, "N": 1000, "h": 0.001}`. Default: None

• **opt_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section *Other Parameters*.

**Attributes**

```
angles numpy.ndarray: Rotation angles (in rad) of the model.
anis numpy.ndarray: The anisotropy factors of the model.
anis_bounds list: Bounds for the nugget.
arg list of str: Names of all arguments.
arg_bounds dict: Bounds for all parameters.
arg_list list of float: Values of all arguments.
dim int: The dimension of the model.
dist_func tuple of callable: pdf, cdf and ppf.
do_rotation bool: State if a rotation is performed.
field_dim int: The field dimension of the model.
hankel_kw dict: `hankel.SymmetricFourierTransform`_kwargs.
has_cdf bool: State if a cdf is defined by the user.
has_ppf bool: State if a ppf is defined by the user.
integral_scale float: The main integral scale of the model.
integral_scale_vec numpy.ndarray: The integral scales in each direction.
is_isotropic bool: State if a model is isotropic.
iso_arg list of str: Names of isotropic arguments.
iso_arg_list list of float: Values of isotropic arguments.
latlon bool: Whether the model depends on geographical coords.
len_rescaled float: The rescaled main length scale of the model.
len_scale float: The main length scale of the model.
len_scale_bounds list: Bounds for the length scale.
```
**len_scale_vec** *numpy.ndarray*: The length scales in each direction.

**name** *str*: The name of the CovModel class.

**nugget** *float*: The nugget of the model.

**nugget_bounds** *list*: Bounds for the nugget.

**opt_arg** *list* of *str*: Names of the optional arguments.

**opt_arg_bounds** *dict*: Bounds for the optional arguments.

**pykrige_angle** 2D rotation angle for pykrige.

**pykrige_angle_x** 3D rotation angle around x for pykrige.

**pykrige_angle_y** 3D rotation angle around y for pykrige.

**pykrige_angle_z** 3D rotation angle around z for pykrige.

**pykrige_anis** 2D anisotropy ratio for pykrige.

**pykrige_anis_y** 3D anisotropy ratio in y direction for pykrige.

**pykrige_anis_z** 3D anisotropy ratio in z direction for pykrige.

**pykrige_kwargs** Keyword arguments for pykrige routines.

**rescale** *float*: Rescale factor for the length scale of the model.

**sill** *float*: The sill of the variogram.

**var** *float*: The variance of the model.

**var_bounds** *list*: Bounds for the variance.

**var_raw** *float*: The raw variance of the model without factor.

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>anisometrize(pos)</strong></td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td><strong>calc_integral_scale()</strong></td>
<td>Calculate the integral scale of the isotropic model.</td>
</tr>
<tr>
<td><strong>check_arg_bounds()</strong></td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td><strong>check_dim(dim)</strong></td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td><strong>check_opt_arg()</strong></td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td><strong>cor(r)</strong></td>
<td>Super-Spherical normalized correlation function.</td>
</tr>
<tr>
<td><strong>cor_axis(r[, axis])</strong></td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cor_spatial(pos)</strong></td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cor_yadrenko(zeta)</strong></td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>correlation(r)</strong></td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td><strong>cov_axis(r[, axis])</strong></td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cov_nugget(r)</strong></td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><strong>cov_spatial(pos)</strong></td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cov_yadrenko(zeta)</strong></td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>covariance(r)</strong></td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td><strong>default_arg_bounds()</strong></td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td><strong>default_opt_arg()</strong></td>
<td>Defaults for the optional arguments.</td>
</tr>
<tr>
<td><strong>default_opt_arg_bounds()</strong></td>
<td>Defaults for boundaries of the optional arguments.</td>
</tr>
<tr>
<td>Method</td>
<td>Description</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td><code>default_rescale()</code></td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td><code>fit_variogram(x_data, y_data[, anis, sill, ...])</code></td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td><code>fix_dim()</code></td>
<td>Set a fix dimension for the model.</td>
</tr>
<tr>
<td><code>isometrize(pos)</code></td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td><code>ln_spectral_rad_pdf(r)</code></td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td><code>main_axes()</code></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><code>percentile_scale([per])</code></td>
<td>Calculate the percentile scale of the isotropic model.</td>
</tr>
<tr>
<td><code>plot([func])</code></td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td><code>pykrige_vario([args, r])</code></td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td><code>set_arg_bounds([check_args])</code></td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td><code>spectral_density(k)</code></td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td><code>spectral_rad_pdf(r)</code></td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td><code>spectrum(k)</code></td>
<td>Spectrum of the covariance model.</td>
</tr>
<tr>
<td><code>var_factor()</code></td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td><code>vario_axis(r[, axis])</code></td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td><code>vario_nugget(r)</code></td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>vario_spatial(pos)</code></td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>vario_yadrenko(zeta)</code></td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>variogram(r)</code></td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

- `anisometrize(pos)`: Bring a position tuple into the anisotropic coordinate-system.
- `calc_integral_scale()`: Calculate the integral scale of the isotropic model.
- `check_arg_bounds()`: Check arguments to be within their given bounds.
- `check_dim(dim)`: Check the given dimension.
- `check_opt_arg()`: Run checks for the optional arguments.

This is in addition to the bound-checks

**Notes**

- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

- `cor(h)`: Super-Spherical normalized correlation function.
- `cor_axis(r, axis=0)`: Correlation along axis of anisotropy.
- `cor_spatial(pos)`: Spatial correlation respecting anisotropy and rotation.
cor_yadrenko ($\zeta$)
Yadrenko correlation for great-circle distance from latlon-pos.

correlation ($r$)
Correlation function of the model.

cov_axis ($r, \text{axis}=0$)
Covariance along axis of anisotropy.

cov_nugget ($r$)
Isotropic covariance of the model respecting the nugget at $r=0$.

cov_spatial ($\text{pos}$)
Spatial covariance respecting anisotropy and rotation.

cov_yadrenko ($\zeta$)
Yadrenko covariance for great-circle distance from latlon-pos.

covariance ($r$)
Covariance of the model.

default_arg_bounds ()
Provide default boundaries for arguments.
Given as a dictionary.

default_opt_arg ()
Defaults for the optional arguments.

- $\{ "\nu" : \frac{\text{dim}-1}{2} \}$

Returns  Defaults for optional arguments
Return type  dict

default_opt_arg_bounds ()
Defaults for boundaries of the optional arguments.

- $\{ "\nu" : [\frac{\text{dim}-1}{2}, 50.0] \}$

Returns  Boundaries for optional arguments
Return type  dict

default_rescale ()
Provide default rescaling factor.

fit_variogram ($x\_data, y\_data, \text{anis}=\text{True}, \text{sill}=\text{None}, \text{init\_guess}=\text{"default"}, \text{weights}=\text{None}, \text{method}=\text{"trf"}, \text{loss}=\text{"soft\_l1"}, \text{max\_eval}=\text{None}, \text{return\_r2}=\text{False}, \text{curve\_fit\_kwargs}=\text{None}, **\text{para\_select})$
Fitting the variogram-model to an empirical variogram.

Parameters

- $x\_data$ (numpy.ndarray) – The bin-centers of the empirical variogram.
- $y\_data$ (numpy.ndarray) – The measured variogram If multiple are given, they
  are interpreted as the directional variograms along the main axis of the associated
  rotated coordinate system. Anisotropy ratios will be estimated in that case.
- $\text{anis}$ (bool, optional) – In case of a directional variogram, you can control
  anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”.
  You could also pass a fixed value to be set in the model. Then the anisotropy ratios
  wont be altered during fitting. Default: True
- $\text{sill}$ (float or bool, optional) – Here you can provide a fixed sill for the vari-
  ogram. It needs to be in a fitting range for the var and nugget bounds. If variance or
  nugget are not selected for estimation, the nugget will be recalculated to fulfill:
- \text{sill} = \text{var} + \text{nugget}

- if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.

If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None

**init_guess** *(str or dict, optional)* – Initial guess for the estimation. Either:

- "default": using the default values of the covariance model ("len_scale" will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))

- ”current”: using the current values of the covariance model

- dict: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above ("default" by default)) Example: {"len_scale": 10, "default": "current"}

Default: “default”

**weights** *(str, numpy.ndarray, callable, optional)* – Weights applied to each point in the estimation. Either:

- 'inv': inverse distance \(1 / (x_{\text{data}} + 1)\)

- list: weights given per bin

- callable: function applied to \(x_{\text{data}}\)

If callable, it must take a 1-d ndarray. Then \(\text{weights} = f(x_{\text{data}})\). Default: None

**method** *(str, 'trf', 'dogbox', optional)* – Algorithm to perform minimization.

- 'trf': Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.

- 'dogbox': dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

Default: ‘trf’

**loss** *(str or callable, optional)* – Determines the loss function in scipy's curve_fit. The following keyword values are allowed:

- 'linear' (default): \(\rho(z) = z\). Gives a standard least-squares problem.

- 'soft_\text{II}': \(\rho(z) = 2 \times ((1 + z)**0.5 - 1)\). The smooth approximation of II (absolute value) loss. Usually a good choice for robust least squares.

- 'huber': \(\rho(z) = z\) if \(z \leq 1\) else \(2z**(0.5) - 1\). Works similarly to ‘soft_\text{II}’.

- 'cauchy': \(\rho(z) = \ln(1 + z)\). Severely weakens outliers influence, but may cause difficulties in optimization process.

- 'arctan': \(\rho(z) = \arctan(z)\). Limits a maximum loss on a single residual, has properties similar to ‘cauchy’.

If callable, it must take a 1-d ndarray \(z=f**2\) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_\text{II}’
GeoStatTools Documentation, Release 1.3.4

- **max_eval** *(int or None, optional)* – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

- **return_r2** *(bool, optional)* – Whether to return the r2 score of the estimation. Default: False

- **curve_fit_kwargs** *(dict, optional)* – Other keyword arguments passed to scipy's `curve_fit`. Default: None

- ****para_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters won't be fitted. By default, all parameters are fitted.

**Returns**

- **fit_para** *(dict)* – Dictionary with the fitted parameter values

- **pcov** *(numpy.ndarray)* – The estimated covariance of popt from scipy's `optimize.curve_fit`. To compute one standard deviation errors on the parameters use `perr = np.sqrt(np.diag(pcov))`.

- **r2_score** *(float, optional)* – r2 score of the curve fitting results. Only if `return_r2` is True.

**Notes**

You can set the bounds for each parameter by accessing `CovModel.set_arg_bounds`. The fitted parameters will be instantly set in the model.

```python
fix_dim()
```
Set a fix dimension for the model.

```python
isometrize(pos)
```
Make a position tuple ready for isotropic operations.

```python
ln_spectral_rad_pdf(r)
```
Log radial spectral density of the model.

```python
main_axes()
```
Axes of the rotated coordinate-system.

```python
percentile_scale(per=0.9)
```
Calculate the percentile scale of the isotrope model.

This is the distance, where the given percentile of the variance is reached by the variogram.

```python
plot(func='variogram', **kwargs)
```
Plot a function of a the CovModel.

**Parameters**

- **func** *(str, optional)* – Function to be plotted. Could be one of:
  - ”variogram”
  - ”covariance”
  - ”correlation”
  - ”vario_spatial”
  - ”cov_spatial”
  - ”cor_spatial”
  - ”vario_yadrenko”
  - ”cov_yadrenko”
GeoStatTools Documentation, Release 1.3.4

- "cor_yadrenko"
- "vario_axis"
- "cov_axis"
- "cor_axis"
- "spectrum"
- "spectral_density"
- "spectral_rad_pdf"

**kwargs – Keyword arguments forwarded to the plotting function “plot_” + func in gstools.covmodel.plot.

See also:
gstools.covmodel.plot

pykrige_vario (args=None, r=0)
Isotropic variogram of the model for pykrige.

set_arg_bounds (check_args=True, **kwargs)
Set bounds for the parameters of the model.

Parameters

- check_args (bool, optional) – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True
- **kwargs – Parameter name as keyword (“var”, “len_scale”, “nugget”, <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open (“o”) or closed (“c”).

spectral_density (k)
Spectral density of the covariance model.

This is given by:

\[ \tilde{S}(k) = \frac{S(k)}{\sigma^2} \]

Where \( S(k) \) is the spectrum of the covariance model.

Parameters k (float) – Radius of the phase: \( k = ||k|| \)

spectral_rad_pdf (r)
Radial spectral density of the model.

spectrum (k)
Spectrum of the covariance model.

This is given by:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \int C(r)e^{ikr}dr \]

Internally, this is calculated by the hankel transformation:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \frac{(2\pi)^{n/2}}{k^{n/2-1}} \int_0^{\infty} r^{n/2}C(r)J_{n/2-1}(kr)dr \]

Where \( C(r) \) is the covariance function of the model.

Parameters k (float) – Radius of the phase: \( k = ||k|| \)

var_factor ()
Factor for the variance.
vario_axis \( (r, \text{axis}=0) \)
Variogram along axis of anisotropy.

vario_nugget \( (r) \)
Isotropic variogram of the model respecting the nugget at \( r=0 \).

vario_spatial \( (\text{pos}) \)
Spatial variogram respecting anisotropy and rotation.

vario_yadrenko \( (\text{zeta}) \)
Yadrenko variogram for great-circle distance from latlon-pos.

variogram \( (r) \)
Isotropic variogram of the model.

property angles
Rotation angles (in rad) of the model.

    Type numpy.ndarray

property anis
The anisotropy factors of the model.

    Type numpy.ndarray

property anis_bounds
Bounds for the nugget.

    Notes
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, <\text{type}>]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

    Type list

property arg
Names of all arguments.

    Type list of str

property arg_bounds
Bounds for all parameters.

    Notes
Keys are the arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, <\text{type}>]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

    Type dict

property arg_list
Values of all arguments.

    Type list of float

property dim
The dimension of the model.

    Type int

property dist_func
pdf, cdf and ppf.
Spectral distribution info from the model.
**property do_rotation**
State if a rotation is performed.

Type bool

**property field_dim**
The field dimension of the model.

Type int

**property hankel_kw**
hankel.SymmetricFourierTransform kw args.

Type dict

**property has_cdf**
State if a cdf is defined by the user.

Type bool

**property has_ppf**
State if a ppf is defined by the user.

Type bool

**property integral_scale**
The main integral scale of the model.

Raises ValueError – If integral scale is not setable.

Type float

**property integral_scale_vec**
The integral scales in each direction.

Notes
This is calculated by:

- integral_scale_vec[0] = integral_scale
- integral_scale_vec[1] = integral_scale*anis[0]

Type numpy.ndarray

**property is_isotropic**
State if a model is isotropic.

Type bool

**property iso_arg**
Names of isotropic arguments.

Type list of str

**property iso_arg_list**
Values of isotropic arguments.

Type list of float

**property latlon**
Whether the model depends on geographical coords.

Type bool
**property len_rescaled**
The rescaled main length scale of the model.

Type `float`

**property len_scale**
The main length scale of the model.

Type `float`

**property len_scale_bounds**
Bounds for the length scale.

Notes
Is a list of 2 or 3 values: `[a, b]` or `[a, b, <type>]` where `<type>` is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type `list`

**property len_scale_vec**
The length scales in each direction.

Notes
This is calculated by:

- `len_scale_vec[0] = len_scale`
- `len_scale_vec[1] = len_scale * anis[0]`

Type `numpy.ndarray`

**property name**
The name of the CovModel class.

Type `str`

**property nugget**
The nugget of the model.

Type `float`

**property nugget_bounds**
Bounds for the nugget.

Notes
Is a list of 2 or 3 values: `[a, b]` or `[a, b, <type>]` where `<type>` is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type `list`

**property opt_arg**
Names of the optional arguments.

Type `list of str`
**property opt_arg_bounds**

Bounds for the optional arguments.

**Notes**

Keys are the opt-arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>]
where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** dict

**property pykrige_angle**

2D rotation angle for pykrige.

**property pykrige_angle_x**

3D rotation angle around x for pykrige.

**property pykrige_angle_y**

3D rotation angle around y for pykrige.

**property pykrige_angle_z**

3D rotation angle around z for pykrige.

**property pykrige_anis**

2D anisotropy ratio for pykrige.

**property pykrige_anis_y**

3D anisotropy ratio in y direction for pykrige.

**property pykrige_anis_z**

3D anisotropy ratio in z direction for pykrige.

**property pykrige_kwargs**

Keyword arguments for pykrige routines.

**property rescale**

Rescale factor for the length scale of the model.

**Type** float

**property sill**

The sill of the variogram.

**Notes**

This is calculated by:

- \( \text{sill} = \text{variance} + \text{nugget} \)

**Type** float

**property var**

The variance of the model.

**Type** float

**property var_bounds**

Bounds for the variance.

**Notes**
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, <\text{type}>]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type**  list

**property var_raw**

The raw variance of the model without factor.

(See. CovModel.var_factor)

**Type**  float
class gstools.covmodel.JBessel(dim=3, var=1.0, len_scale=1.0, nugget=0.0, anis=1.0, angles=0.0, integral_scale=None, rescale=None, lat_lon=False, var_raw=None, hankel_kw=None, **opt_arg)

Bases: gstools.covmodel.base.CovModel

The J-Bessel hole model.

This covariance model is a valid hole model, meaning it has areas of negative correlation but a valid spectral density.

Notes

This model is given by the following correlation function [Chiles2009]:

\[
\rho(r) = \Gamma(\nu + 1) \frac{J_\nu(s \cdot \frac{r}{\ell})}{(s \cdot \frac{r}{\ell})^\nu}
\]

Where the standard rescale factor is \( s = 1 \). \( \Gamma \) is the gamma function and \( J_\nu \) is the Bessel functions of the first kind. \( \nu \geq \frac{d}{2} - 1 \) is a shape parameter, which defaults to \( \nu = \frac{d}{2} \), since the spectrum of the model gets instable for \( \nu \to \frac{d}{2} - 1 \).

For \( \nu = \frac{1}{2} \) (valid in d=1,2,3) we get the so-called ‘Wave’ model:

\[
\rho(r) = \frac{\sin(s \cdot \frac{r}{\ell})}{s \cdot \frac{r}{\ell}}
\]

References

Other Parameters nu (float, optional) – Shape parameter. Standard range: [dim/2 - 1, 50] Default: dim/2

Parameters

- **dim**(int, optional) – dimension of the model. Default: 3
- **var**(float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- **len_scale**(float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, anis will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- **nugget**(float, optional) – nugget of the model. Default: 0.0
- **anis**(float or list, optional) – anisotropy ratios in the transversal directions [e_y, e_z].
  - e_y = 1_y / 1_x
  - e_z = 1_z / 1_x
  If only one value is given in 3D, e_y will be set to 1. This value will be ignored, if multiple len_scales are given. Default: 1.0
- **angles**(float or list, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)
  Default: 0.0
**integral_scale**(float or list or None, optional) – If given, len_scale will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None

**rescale**(float or None, optional) – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to co-incide with e.g. the integral scale. Will be set by each model individually. Default: None

**latlon**(bool, optional) – Whether the model is describing 2D fields on earths surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance \( r \) will be replaced by \( 2 \sin(\alpha/2) \), where \( \alpha \) is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, \( \text{dim} \) will be set to 3 and anisotropy will be disabled. rescale can be set to e.g. earth’s radius, to have a meaningful len_scale parameter. Default: False

**var_raw**(float or None, optional) – raw variance of the model which will be multiplied with CovModel.var_factor to result in the actual variance. If given, var will be ignored. (This is just for models that override CovModel.var_factor) Default: None

**hankel_kw**(dict or None, optional) – Modify the init-arguments of hankel. SymmetricFourierTransform used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to {"a": -1, "b": 1, "N": 1000, "h": 0.001}. Default: None

****opt_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section Other Parameters.

**Attributes**

- **angles** numpy.ndarray: Rotation angles (in rad) of the model.
- **anis** numpy.ndarray: The anisotropy factors of the model.
- **anis_bounds** list: Bounds for the nugget.
- **arg** list of str: Names of all arguments.
- **arg_bounds** dict: Bounds for all parameters.
- **arg_list** list of float: Values of all arguments.
- **dim** int: The dimension of the model.
- **dist_func** tuple of callable: pdf, cdf and ppf.
- **do_rotation** bool: State if a rotation is performed.
- **field_dim** int: The field dimension of the model.
- **hankel_kw** dict: hankel.SymmetricFourierTransform kwargs.
- **has_cdf** bool: State if a cdf is defined by the user.
- **has_ppf** bool: State if a ppf is defined by the user.
- **integral_scale** float: The main integral scale of the model.
- **integral_scale_vec** numpy.ndarray: The integral scales in each direction.
- **is_isotropic** bool: State if a model is isotropic.
- **iso_arg** list of str: Names of isotropic arguments.
- **iso_arg_list** list of float: Values of isotropic arguments.
- **latlon** bool: Whether the model depends on geographical coords.
- **len_rescaled** float: The rescaled main length scale of the model.
**len_scale** float: The main length scale of the model.

**len_scale_bounds** list: Bounds for the length scale.

**len_scale_vec** *numpy.ndarray*: The length scales in each direction.

**name** str: The name of the CovModel class.

**nugget** float: The nugget of the model.

**nugget_bounds** list: Bounds for the nugget.

**opt_arg** list of str: Names of the optional arguments.

**opt_arg_bounds** dict: Bounds for the optional arguments.

**pykrige_angle** 2D rotation angle for pykrige.

**pykrige_angle_x** 3D rotation angle around x for pykrige.

**pykrige_angle_y** 3D rotation angle around y for pykrige.

**pykrige_angle_z** 3D rotation angle around z for pykrige.

**pykrige_anis** 2D anisotropy ratio for pykrige.

**pykrige_anis_y** 3D anisotropy ratio in y direction for pykrige.

**pykrige_anis_z** 3D anisotropy ratio in z direction for pykrige.

**pykrige_kwargs** Keyword arguments for pykrige routines.

**rescale** float: Rescale factor for the length scale of the model.

**sill** float: The sill of the variogram.

**var** float: The variance of the model.

**var_bounds** list: Bounds for the variance.

**var_raw** float: The raw variance of the model without factor.

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>anisometrize(pos)</strong></td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td><strong>calc_integral_scale()</strong></td>
<td>Calculate the integral scale of the isotrope model.</td>
</tr>
<tr>
<td><strong>check_arg_bounds()</strong></td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td><strong>check_dim(dim)</strong></td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td><strong>check_opt_arg()</strong></td>
<td>Check the optional arguments.</td>
</tr>
<tr>
<td><strong>cor(h)</strong></td>
<td>J-Bessel correlation.</td>
</tr>
<tr>
<td><strong>cor_axis(r[, axis])</strong></td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cor_spatial(pos)</strong></td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cor_yadrenko(zeta)</strong></td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>correlation(r)</strong></td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td><strong>cov_axis(r[, axis])</strong></td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cov_nugget(r)</strong></td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><strong>cov_spatial(pos)</strong></td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cov_yadrenko(zeta)</strong></td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>covariance(r)</strong></td>
<td>Covariance of the model.</td>
</tr>
</tbody>
</table>

continues on next page
default_arg_bounds() Provide default boundaries for arguments.
default_opt_arg() Defaults for the optional arguments.
default_opt_arg_bounds() Defaults for boundaries of the optional arguments.
default_rescale() Provide default rescaling factor.
fit_variogram(x_data, y_data[, anis, sill, ...]) Fitting the variogram-model to an empirical variogram.
fix_dim() Set a fix dimension for the model.
isometrize(pos) Make a position tuple ready for isotropic operations.
ln_spectral_rad_pdf(r) Log radial spectral density of the model.
main_axes() Axes of the rotated coordinate-system.
percentile_scale([per]) Calculate the percentile scale of the isotrope model.
plot([func]) Plot a function of a the CovModel.
pykrige_vario([args, r]) Isotropic variogram of the model for pykrige.
set_arg_bounds([check_args]) Set bounds for the parameters of the model.
spectral_density(k) Spectral density of the covariance model.
spectral_rad_pdf(r) Radial spectral density of the model.
spectrum(k) Spectrum of the covariance model.
var_factor() Factor for the variance.
vario_axis(r[, axis]) Isotropic along axis of anisotropy.
vario_nugget(r) Isotropic variogram of the model respecting the nugget at r=0.
vario_spatial(pos) Spatial variogram respecting anisotropy and rotation.
vario_yadrenko(zeta) Yadrenko variogram for great-circle distance from latlon-pos.
variogram(r) Isotropic variogram of the model.

anisometrize(pos) Bring a position tuple into the anisotropic coordinate-system.
calc_integral_scale() Calculate the integral scale of the isotrope model.
check_arg_bounds() Check arguments to be within their given bounds.
check_dim(dim) Check the given dimension.
check_opt_arg() Check the optional arguments.

Warns nu – If nu is close to dim/2 - 1, the model tends to get unstable.
cor(h) J-Bessel correlation.
cor_axis(r, axis=0) Correlation along axis of anisotropy.
cor_spatial(pos) Spatial correlation respecting anisotropy and rotation.
cor_yadrenko(zeta) Yadrenko correlation for great-circle distance from latlon-pos.
correlation(r) Correlation function of the model.
cov_axis \( (r, \text{axis}=0) \)
Covariance along axis of anisotropy.

cov_nugget \( (r) \)
Isotropic covariance of the model respecting the nugget at \( r=0 \).

cov_spatial \( (pos) \)
Spatial covariance respecting anisotropy and rotation.

cov_yadrenko \( (\text{zeta}) \)
Yadrenko covariance for great-circle distance from latlon-pos.

covariance \( (r) \)
Covariance of the model.

default_arg_bounds()
Provide default boundaries for arguments.
Given as a dictionary.

default_opt_arg()
Defaults for the optional arguments.

- \{ "\text{nu}": \text{dim}/2 \}

Returns
Defaults for optional arguments

Return type
dict

default_opt_arg_bounds()
Defaults for boundaries of the optional arguments.

- \{ "\text{nu}": [\text{dim}/2 - 1, 50.0]\}

Returns
Boundaries for optional arguments

Return type
dict

default_rescale()
Provide default rescaling factor.

fit_variogram \( (x_{\text{data}}, y_{\text{data}}, \text{anis}=\text{True}, \text{sill}=\text{None}, \text{init_guess}=\text{\textquote{default}}, \text{weights}=\text{None}, \text{method}=\text{\textquote{trf}}, \text{loss}=\text{\textquote{soft_l1}}, \text{max_eval}=\text{None}, \text{return_r2}=\text{False}, \text{curve_fit_kwargs}=\text{None}, **\text{para_select}) \)
Fitting the variogram-model to an empirical variogram.

Parameters

- \text{x_data} (numpy.ndarray) – The bin-centers of the empirical variogram.

- \text{y_data} (numpy.ndarray) – The measured variogram If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.

- \text{anis} (bool, optional) – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios wont be altered during fitting. Default: True

- \text{sill} (float or bool, optional) – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:
  
  - sill = var + nugget
  
  - if the variance is bigger than the sill, nugget will bet set to its lower bound and the variance will be set to the fitting partial sill.
If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deslected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None

- **init_guess** *(str or dict, optional)* – Initial guess for the estimation. Either:
  - ”default”: using the default values of the covariance model (“len_scale” will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))
  - ”current”: using the current values of the covariance model
  - dict: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above (“default” by default)) Example: {
    "len_scale": 10, "default": "current"}
  Default: “default”

- **weights** *(str, numpy.ndarray, callable, optional)* – Weights applied to each point in the estimation. Either:
  - ‘inv’: inverse distance 1 / (x_data + 1)
  - list: weights given per bin
  - callable: function applied to x_data
  If callable, it must take a 1-d ndarray. Then weights = f(x_data). Default: None

- **method** *({'trf', 'dogbox'}, optional)* – Algorithm to perform minimization.
  - ‘trf’ : Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - ‘dogbox’ : dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.
  Default: ‘trf’

- **loss** *(str or callable, optional)* – Determines the loss function in scipy’s curve_fit. The following keyword values are allowed:
  - ‘linear’ (default): \( \rho(z) = z \). Gives a standard least-squares problem.
  - ‘soft_l1’: \( \rho(z) = 2 \times ((1 + z)^{0.5} - 1) \). The smooth approximation of L1 (absolute value) loss. Usually a good choice for robust least squares.
  - ‘huber’ : \( \rho(z) = z \) if \( z \leq 1 \) else \( 2 \times z^{0.5} - 1 \). Works similarly to ‘soft_l1’.
  - ‘cauchy’ : \( \rho(z) = \ln(1 + z) \). Severely weakens outliers influence, but may cause difficulties in optimization process.
  - ‘arctan’ : \( \rho(z) = \arctan(z) \). Limits a maximum loss on a single residual, has properties similar to ‘cauchy’.
  If callable, it must take a 1-d ndarray \( z = f**2 \) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_l1’

- **max_eval** *(int or None, optional)* – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

- **return_r2** *(bool, optional)* – Whether to return the r2 score of the estimation.
  Default: False
- `curve_fit_kwargs` (dict, optional) – Other keyword arguments passed to scipy`s `curve_fit`. Default: None

- **`para_select`** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters won’t be fitted. By default, all parameters are fitted.

**Returns**

- `fit_para` (dict) – Dictionary with the fitted parameter values
- `pcov` (numpy.ndarray) – The estimated covariance of `popt` from scipy.optimize.curve_fit. To compute one standard deviation errors on the parameters use `perr = np.sqrt(np.diag(pcov))`.
- `r2_score` (float, optional) – r2 score of the curve fitting results. Only if `return_r2` is True.

**Notes**

You can set the bounds for each parameter by accessing `CovModel.set_arg_bounds`.

The fitted parameters will be instantly set in the model.

```python
fix_dim()
Set a fix dimension for the model.

isometrize(pos)
Make a position tuple ready for isotropic operations.

ln_spectral_rad_pdf(r)
Log radial spectral density of the model.

main_axes()
Axes of the rotated coordinate-system.

percentile_scale(per=0.9)
Calculate the percentile scale of the isotrope model.

This is the distance, where the given percentile of the variance is reached by the variogram

plot(func='variogram', **kwargs)
Plot a function of a the CovModel.

Parameters

- `func` (str, optional) – Function to be plotted. Could be one of:
 - ”variogram”
 - ”covariance”
 - ”correlation”
 - ”vario_spatial”
 - ”cov_spatial”
 - ”cor_spatial”
 - ”vario_yadrenko”
 - ”cov_yadrenko”
 - ”cor_yadrenko”
 - ”vario_axis”
 - ”cov_axis”
 - ”cov_axis”
```
- "cor_axis"
- "spectrum"
- "spectral_density"
- "spectral_rad_pdf"

• **kwargs – Keyword arguments forwarded to the plotting function “plot_” + func in gstools.covmodel.plot.

See also:

gstools.covmodel.plot

pykrige_vario (args=None, r=0)
Isotropic variogram of the model for pykrige.

set_arg_bounds (check_args=True, **kwargs)
Set bounds for the parameters of the model.

Parameters

• check_args (bool, optional) – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True

• **kwargs – Parameter name as keyword ("var", "len_scale", "nugget", <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

spectral_density (k)
Spectral density of the covariance model.
This is given by:

\[
\tilde{S}(k) = \frac{S(k)}{\sigma^2}
\]

Where \( S(k) \) is the spectrum of the covariance model.

Parameters k (float) – Radius of the phase: \( k = ||k|| \)

spectral_rad_pdf (r)
Radial spectral density of the model.

spectrum (k)
Spectrum of the covariance model.
This is given by:

\[
S(k) = \left( \frac{1}{2\pi} \right)^n \int C(r)e^{ikr}d^n r
\]

Internally, this is calculated by the hankel transformation:

\[
S(k) = \left( \frac{1}{2\pi} \right)^n \frac{(2\pi)^{n/2}}{k^{n/2-1}} \int_0^\infty r^{n/2}C(r)J_{n/2-1}(kr)dr
\]

Where \( C(r) \) is the covariance function of the model.

Parameters k (float) – Radius of the phase: \( k = ||k|| \)

var_factor ()
Factor for the variance.

vario_axis (r, axis=0)
Variogram along axis of anisotropy.

vario_nugget (r)
Isotropic variogram of the model respecting the nugget at r=0.
**vario_spatial** *(pos)*
Spatial variogram respecting anisotropy and rotation.

**vario_yadrenko** *(zeta)*
Yadrenko variogram for great-circle distance from latlon-pos.

**variogram** *(r)*
Isotropic variogram of the model.

**property angles**
Rotation angles (in rad) of the model.

**property anis**
The anisotropy factors of the model.

**property anis_bounds**
Bounds for the nugget.

Notes
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**property arg**
Names of all arguments.

**property arg_bounds**
Bounds for all parameters.

Notes
Keys are the arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**property arg_list**
Values of all arguments.

**property dim**
The dimension of the model.

**property dist_func**
pdf, cdf and ppf.
Spectral distribution info from the model.

**property do_rotation**
State if a rotation is performed.
property field_dim
The field dimension of the model.
    Type int

property hankel_kw
    hankel.SymmetricFourierTransform kwars.
    Type dict

property has_cdf
State if a cdf is defined by the user.
    Type bool

property has_ppf
State if a ppf is defined by the user.
    Type bool

property integral_scale
The main integral scale of the model.
    Raises ValueError – If integral scale is not setable.
    Type float

property integral_scale_vec
The integral scales in each direction.

Notes
This is calculated by:

- integral_scale_vec[0] = integral_scale
- integral_scale_vec[1] = integral_scale*anis[0]
    Type numpy.ndarray

property is_isotropic
State if a model is isotropic.
    Type bool

property iso_arg
Names of isotropic arguments.
    Type list of str

property iso_arg_list
Values of isotropic arguments.
    Type list of float

property latlon
Whether the model depends on geographical coords.
    Type bool

property len_rescaled
The rescaled main length scale of the model.
    Type float

property len_scale
The main length scale of the model.
Type float

**property len_scale_bounds**
Bounds for the length scale.

**Notes**
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type list

**property len_scale_vec**
The length scales in each direction.

**Notes**
This is calculated by:
- \(\text{len_scale_vec}[0] = \text{len_scale}\)
- \(\text{len_scale_vec}[1] = \text{len_scale} \times \text{anis}[0]\)
- \(\text{len_scale_vec}[2] = \text{len_scale} \times \text{anis}[1]\)

Type numpy.ndarray

**property name**
The name of the CovModel class.

**Type** str

**property nugget**
The nugget of the model.

**Type** float

**property nugget_bounds**
Bounds for the nugget.

**Notes**
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type list

**property opt_arg**
Names of the optional arguments.

**Type** list of str

**property opt_arg_bounds**
Bounds for the optional arguments.

**Notes**
Keys are the opt-arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type**\[\text{dict}\]

**property pykrige_angle**
2D rotation angle for pykrige.

**property pykrige_angle_x**
3D rotation angle around x for pykrige.

**property pykrige_angle_y**
3D rotation angle around y for pykrige.

**property pykrige_angle_z**
3D rotation angle around z for pykrige.

**property pykrige_anis**
2D anisotropy ratio for pykrige.

**property pykrige_anis_y**
3D anisotropy ratio in y direction for pykrige.

**property pykrige_anis_z**
3D anisotropy ratio in z direction for pykrige.

**property pykrige_kwarg**
Keyword arguments for pykrige routines.

**property rescale**
Rescale factor for the length scale of the model.

**Type**\[\text{float}\]

**property sill**
The sill of the variogram.

---

**Notes**

This is calculated by:

- \(\text{sill} = \text{variance} + \text{nugget}\)

**Type**\[\text{float}\]

**property var**
The variance of the model.

**Type**\[\text{float}\]

**property var_bounds**
Bounds for the variance.

---

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type**\[\text{list}\]
property var_raw
    The raw variance of the model without factor.
    (See. CovModel.var_factor)

    Type float
Truncated Power Law Covariance Models

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPLGaussian</td>
<td>Truncated-Power-Law with Gaussian modes.</td>
</tr>
<tr>
<td>TPLExponential</td>
<td>Truncated-Power-Law with Exponential modes.</td>
</tr>
<tr>
<td>TPLStable</td>
<td>Truncated-Power-Law with Stable modes.</td>
</tr>
<tr>
<td>TPLSimple</td>
<td>The simply truncated power law model.</td>
</tr>
</tbody>
</table>

```python
gstools.covmodel.TPLGaussian
class gstools.covmodel.TPLGaussian(dim=3, var=1.0, len_scale=1.0, nugget=0.0,
 anis=1.0, angles=0.0, integral_scale=None,
 rescale=None, latlon=False, var_raw=None, hankel_kw=None, *opt_arg)
```

Notes

The truncated power law is given by a superposition of scale-dependent variograms [Federico1997]:

\[
\gamma_{\ell_{low}, \ell_{up}}(r) = \int_{\ell_{low}}^{\ell_{up}} \gamma(r, \lambda) \frac{d\lambda}{\lambda}
\]

with Gaussian modes on each scale:

\[
\gamma(r, \lambda) = \sigma^2(\lambda) \cdot \left(1 - \exp\left[-\left(\frac{r}{\lambda}\right)^2\right]\right)
\]

\[
\sigma^2(\lambda) = C \cdot \lambda^{2H}
\]

This results in:

\[
\gamma_{\ell_{low}, \ell_{up}}(r) = \sigma^2_{\ell_{low}, \ell_{up}} \cdot \left(1 - H \cdot \frac{\ell_{up}^{2H} \cdot E_{1+H} \left(\frac{r}{\ell_{up}}\right)^2 - \ell_{low}^{2H} \cdot E_{1+H} \left(\frac{r}{\ell_{low}}\right)^2}{\ell_{up}^{2H} - \ell_{low}^{2H}}\right)
\]

\[
\sigma^2_{\ell_{low}, \ell_{up}} = \frac{C \cdot \left(\ell_{up}^{2H} - \ell_{low}^{2H}\right)}{2H}
\]

The “length scale” of this model is equivalent by the integration range:

\[
\ell = \ell_{up} - \ell_{low}
\]

If you want to define an upper scale truncation, you should set `len_low` and `len_scale` accordingly.

The following Parameters occur:

- \(C > 0\): scaling factor from the Power-Law (intensity of variation) This parameter will be calculated internally by the given variance. You can access C directly by `model.var_raw`
- \(0 < H < 1\): hurst coefficient (model.hurst)
- \(\ell_{low} \geq 0\): lower length scale truncation of the model (model.len_low)
- \(\ell_{up} \geq 0\): upper length scale truncation of the model (model.len_up)

This will be calculated internally by:

- \(\ell_{up} = \ell_{low} + \text{len_scale}\)

That means, that the `len_scale` in this model actually represents the integration range for the truncated power law.

- \(E_s(x)\) is the exponential integral.
References

Other Parameters

- **hurst** (float, optional) – Hurst coefficient of the power law. Standard range: \((0, 1)\). Default: 0.5
- **len_low** (float, optional) – The lower length scale truncation of the model. Standard range: \([0, \infty)\). Default: 0.0

Parameters

- **dim** (int, optional) – dimension of the model. Default: 3
- **var** (float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- **len_scale** (float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, **anis** will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- **nugget** (float, optional) – nugget of the model. Default: 0.0
- **anis** (float or list, optional) – anisotropy ratios in the transversal directions \([e_y, e_z]\).
  - \(e_y = l_y / l_x\)
  - \(e_z = l_z / l_x\)
  If only one value is given in 3D, \(e_y\) will be set to 1. This value will be ignored, if multiple **len_scales** are given. Default: 1.0
- **angles** (float or list, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)
  Default: 0.0
- **integral_scale** (float or list or None, optional) – If given, **len_scale** will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None
- **rescale** (float or None, optional) – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None
- **latlon** (bool, optional) – Whether the model is describing 2D fields on earths surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance \(r\) will be replaced by \(2 \sin(\alpha/2)\), where \(\alpha\) is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, **dim** will be set to 3 and anisotropy will be disabled. **rescale** can be set to e.g. earth’s radius, to have a meaningful **len_scale** parameter. Default: False
- **var_raw** (float or None, optional) – raw variance of the model which will be multiplied with **CovModel.var_factor** to result in the actual variance. If given, **var** will be ignored. (This is just for models that override **CovModel.var_factor**) Default: None
- **hankel_kw** (dict or None, optional) – Modify the init-arguments of **hankel.SymmetricFourierTransform** used for the spectrum calculation. Use with
caution (Better: Don’t!). None is equivalent to \{"a": -1, "b": 1, "N": 1000, "h": 0.001\}. Default: None

**opt_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section Other Parameters.

Attributes

- **angles** *numpy.ndarray*: Rotation angles (in rad) of the model.
- **anis** *numpy.ndarray*: The anisotropy factors of the model.
- **anis_bounds** *list*: Bounds for the nugget.
- **arg** *list of str*: Names of all arguments.
- **arg_bounds** *dict*: Bounds for all parameters.
- **arg_list** *list of float*: Values of all arguments.
- **dim** *int*: The dimension of the model.
- **dist_func** *tuple of callable*: pdf, cdf and ppf.
- **do_rotation** *bool*: State if a rotation is performed.
- **field_dim** *int*: The field dimension of the model.
- **hankel_kw** *dict*: `hankel.SymmetricFourierTransform` kwargs.
- **has_cdf** *bool*: State if a cdf is defined by the user.
- **has_ppf** *bool*: State if a ppf is defined by the user.
- **integral_scale** *float*: The main integral scale of the model.
- **integral_scale_vec** *numpy.ndarray*: The integral scales in each direction.
- **is_isotropic** *bool*: State if a model is isotropic.
- **iso_arg** *list of str*: Names of isotropic arguments.
- **iso_arg_list** *list of float*: Values of isotropic arguments.
- **latlon** *bool*: Whether the model depends on geographical coords.
- **len_low_rescaled** *float*: Lower length scale truncation rescaled.
- **len_rescaled** *float*: The rescaled main length scale of the model.
- **len_scale** *float*: The main length scale of the model.
- **len_scale_bounds** *list*: Bounds for the length scale.
- **len_scale_vec** *numpy.ndarray*: The length scales in each direction.
- **len_up** *float*: Upper length scale truncation of the model.
- **len_up_rescaled** *float*: Upper length scale truncation rescaled.
- **name** *str*: The name of the CovModel class.
- **nugget** *float*: The nugget of the model.
- **nugget_bounds** *list*: Bounds for the nugget.
- **opt_arg** *list of str*: Names of the optional arguments.
- **opt_arg_bounds** *dict*: Bounds for the optional arguments.
- **pykrige_angle** 2D rotation angle for pykrige.
- **pykrige_angle_x** 3D rotation angle around x for pykrige.
- **pykrige_angle_y** 3D rotation angle around y for pykrige.
- **pykrige_angle_z** 3D rotation angle around z for pykrige.
**pykrige_anis** 2D anisotropy ratio for pykrige.

**pykrige_anis_y** 3D anisotropy ratio in y direction for pykrige.

**pykrige_anis_z** 3D anisotropy ratio in z direction for pykrige.

**pykrige_kwargs** Keyword arguments for pykrige routines.

**rescale** float: Rescale factor for the length scale of the model.

**sill** float: The sill of the variogram.

**var** float: The variance of the model.

**var_bounds** list: Bounds for the variance.

**var_raw** float: The raw variance of the model without factor.

---

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>anisometrize(pos)</code></td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td><code>calc_integral_scale()</code></td>
<td>Calculate the integral scale of the isotropic model.</td>
</tr>
<tr>
<td><code>check_arg_bounds()</code></td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td><code>check_dim(dim)</code></td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td><code>check_opt_arg()</code></td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td><code>cor(r)</code></td>
<td>TPL with Gaussian modes - normalized correlation function.</td>
</tr>
<tr>
<td><code>cor_axis(r[, axis])</code></td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td><code>cor_spatial(pos)</code></td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>cor_yadrenko(zeta)</code></td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>correlation(r)</code></td>
<td>TPL with Gaussian modes - correlation function.</td>
</tr>
<tr>
<td><code>cov_axis(r[, axis])</code></td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td><code>cov_nugget(r)</code></td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>cov_spatial(pos)</code></td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>cov_yadrenko(zeta)</code></td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>covariance(r)</code></td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td><code>default_arg_bounds()</code></td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td><code>default_opt_arg()</code></td>
<td>Defaults for the optional arguments.</td>
</tr>
<tr>
<td><code>default_opt_arg_bounds()</code></td>
<td>Defaults for boundaries of the optional arguments.</td>
</tr>
<tr>
<td><code>default_rescale()</code></td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td><code>fit_variogram(x_data, y_data[, anis, sill, ...])</code></td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td><code>fix_dim()</code></td>
<td>Set a fix dimension for the model.</td>
</tr>
<tr>
<td><code>isometrize(pos)</code></td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td><code>ln_spectral_rad_pdf(r)</code></td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td><code>main_axes()</code></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><code>percentile_scale([per])</code></td>
<td>Calculate the percentile scale of the isotropic model.</td>
</tr>
<tr>
<td><code>plot([func])</code></td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td><code>pykrige_vario([args, r])</code></td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td><code>set_arg_bounds([check_args])</code></td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td><code>spectral_density(k)</code></td>
<td>Spectral density of the covariance model.</td>
</tr>
</tbody>
</table>

---

3.6. gstools.covmodel 285

continues on next page
Table 28 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>spectral_rad_pdf(r)</code></td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td><code>spectrum(k)</code></td>
<td>Spectrum of the covariance model.</td>
</tr>
<tr>
<td><code>var_factor()</code></td>
<td>Factor for C (intensity of variation) to result in variance.</td>
</tr>
<tr>
<td><code>vario_axis(r[, axis])</code></td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td><code>vario_nugget(r)</code></td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>vario.spatial(pos)</code></td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>vario.yadrenko(zeta)</code></td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>varioogram(r)</code></td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

**anisometrize(pos)**

Bring a position tuple into the anisotropic coordinate-system.

**calc_integral_scale()**

Calculate the integral scale of the isotrope model.

**check_arg_bounds()**

Check arguments to be within their given bounds.

**check_dim(dim)**

Check the given dimension.

**check_opt_arg()**

Run checks for the optional arguments.

This is in addition to the bound-checks

**Notes**

- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

**cor(h)**

TPL with Gaussian modes - normalized correlation function.

**cor_axis(r, axis=0)**

Correlation along axis of anisotropy.

**cor.spatial(pos)**

Spatial correlation respecting anisotropy and rotation.

**cor.yadrenko(zeta)**

Yadrenko correlation for great-circle distance from latlon-pos.

**correlation(r)**

TPL with Gaussian modes - correlation function.

**cov_axis(r, axis=0)**

Covariance along axis of anisotropy.

**cov.nugget(r)**

Isotropic covariance of the model respecting the nugget at r=0.

**cov.spatial(pos)**

Spatial covariance respecting anisotropy and rotation.

**cov.yadrenko(zeta)**

Yadrenko covariance for great-circle distance from latlon-pos.
covariance($r$)
Covariance of the model.

default_arg_bounds()
Provide default boundaries for arguments.
Given as a dictionary.

default_opt_arg()
Defaults for the optional arguments.
  • {"hurst": 0.5, "len_low": 0.0}
Returns Defaults for optional arguments
Return type dict

default_opt_arg_bounds()
Defaults for boundaries of the optional arguments.
  • {"hurst": [0, 1, "oo"], "len_low": [0, inf, "cc"]}
Returns Boundaries for optional arguments
Return type dict

default_rescale()
Provide default rescaling factor.

fit_variogram(x_data, y_data, anis=True, sill=None, init_guess='default', weights=None, method='trf', loss='soft_l1', max_eval=None, return_r2=False, curve_fit_kwargs=None, **para_select)
Fitting the variogram-model to an empirical variogram.

Parameters
  • x_data (numpy.ndarray) – The bin-centers of the empirical variogram.
  • y_data (numpy.ndarray) – The measured variogram If multiple are given, they
    are interpreted as the directional variograms along the main axis of the associated
    rotated coordinate system. Anisotropy ratios will be estimated in that case.
  • anis (bool, optional) – In case of a directional variogram, you can control
    anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”.
    You could also pass a fixed value to be set in the model. Then the anisotropy ratios
    won’t be altered during fitting. Default: True
  • sill (float or bool, optional) – Here you can provide a fixed sill for the vari-
    ogram. It needs to be in a fitting range for the var and nugget bounds. If variance or
    nugget are not selected for estimation, the nugget will be recalculated to fulfill:
    – sill = var + nugget
    – if the variance is bigger than the sill, nugget will be set to its lower bound and the
      variance will be set to the fitting partial sill.

    If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes
    up. Same for nugget. If sill=False, it will be deselected from estimation and set to the
    current sill of the model. Then, the procedure above is applied. Default: None
  • init_guess (str or dict, optional) – Initial guess for the estimation. Either:
    – “default”: using the default values of the covariance model (“len_scale” will be
      mean of given bin centers; “var” and “nugget” will be mean of given variogram
      values (if in given bounds))
    – “current”: using the current values of the covariance model
- dict: dictionary with parameter names and given value (separate "default" can bet set to "default" or "current" for unspecified values to get same behavior as given above ("default" by default)) Example:{"len_scale": 10, "default": "current"}

Default: “default”

- weights (str, numpy.ndarray, callable, optional) – Weights applied to each point in the estimation. Either:
  - 'inv': inverse distance 1 / (x_data + 1)
  - list: weights given per bin
  - callable: function applied to x_data

If callable, it must take a 1-d ndarray. Then weights = f(x_data). Default: None

- method ({'trf', 'dogbox'}, optional) – Algorithm to perform minimization.
  - 'trf': Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - 'dogbox': dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

Default: ‘trf’

- loss (str or callable, optional) – Determines the loss function in scipy’s curve_fit. The following keyword values are allowed:
  - 'soft_l1': rho(z) = 2 * ((1 + z)**0.5 - 1). The smooth approximation of l1 (absolute value) loss. Usually a good choice for robust least squares.
  - 'huber': rho(z) = z if z <= 1 else 2*z**0.5 - 1. Works similarly to ‘soft_l1’.
  - 'cauchy': rho(z) = ln(1 + z). Severely weakens outliers influence, but may cause difficulties in optimization process.
  - 'arctan': rho(z) = arctan(z). Limits a maximum loss on a single residual, has properties similar to ‘cauchy’.

If callable, it must take a 1-d ndarray z=f**2 and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_l1’

- max_eval (int or None, optional) – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

- return_r2 (bool, optional) – Whether to return the r2 score of the estimation. Default: False

- curve_fit_kwargs (dict, optional) – Other keyword arguments passed to scipy’s curve_fit. Default: None

- **para_select – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters wont be fitted. By default, all parameters are fitted.

Returns

- fit_para (dict) – Dictionary with the fitted parameter values
• **pcov** *(numpy.ndarray) – The estimated covariance of *popt* from *scipy.optimize.curve_fit*. To compute one standard deviation errors on the parameters use \( \text{perr} = \sqrt{\text{np.diag(pcov)}} \).

• **r2_score** *(float, optional) – r2 score of the curve fitting results. Only if return_r2 is True.*

---

**Notes**

You can set the bounds for each parameter by accessing *CovModel.set_arg_bounds*. The fitted parameters will be instantly set in the model.

---

**fix_dim()**

Set a fix dimension for the model.

**isometrize(pos)**

Make a position tuple ready for isotropic operations.

**ln_spectral_rad_pdf(r)**

Log radial spectral density of the model.

**main_axes()**

Axes of the rotated coordinate-system.

**percentile_scale(per=0.9)**

Calculate the percentile scale of the isotrope model.

This is the distance, where the given percentile of the variance is reached by the variogram

**plot(func='variogram', **kwargs)**

Plot a function of a the CovModel.

**Parameters**

• **func** *(str, optional) – Function to be plotted. Could be one of:*

  - "variogram"
  - "covariance"
  - "correlation"
  - "vario_spatial"
  - "cov_spatial"
  - "cor_spatial"
  - "vario_yadrenko"
  - "cov_yadrenko"
  - "cor_yadrenko"
  - "vario_axis"
  - "cov_axis"
  - "cor_axis"
  - "spectrum"
  - "spectral_density"
  - "spectral_rad_pdf"

• **kwargs** – Keyword arguments forwarded to the plotting function “plot_” + *func* in *gstools.covmodel.plot*. 
See also:

gstools.covmodel.plot

pykrige_vario (args=None, r=0)
Isotropic variogram of the model for pykrige.

set_arg_bounds (check_args=True, **kwargs)
Set bounds for the parameters of the model.

Parameters

• check_args (bool, optional) – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True

• **kwargs – Parameter name as keyword (“var”, “len_scale”, “nugget”, <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open (“o”) or closed (“c”).

spectral_density (k)
Spectral density of the covariance model.
This is given by:

\[ \tilde{S}(k) = \frac{S(k)}{\sigma^2} \]

Where \( S(k) \) is the spectrum of the covariance model.

Parameters k (float) – Radius of the phase: \( k = ||k|| \)

spectral_rad_pdf (r)
Radial spectral density of the model.

spectrum (k)
Spectrum of the covariance model.
This is given by:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \int C(r)e^{ikr}dr \]

Internally, this is calculated by the hankel transformation:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \frac{(2\pi)^{n/2}}{k^{n/2-1}} \int_0^\infty r^{n/2}C(r)J_{n/2-1}(kr)dr \]

Where \( C(r) \) is the covariance function of the model.

Parameters k (float) – Radius of the phase: \( k = ||k|| \)

var_factor ()
Factor for C (intensity of variation) to result in variance.

vario_axis (r, axis=0)
Variogram along axis of anisotropy.

vario_nugget (r)
Isotropic variogram of the model respecting the nugget at r=0.

vario_spatial (pos)
Spatial variogram respecting anisotropy and rotation.

vario_yadrenko (zeta)
Yadrenenko variogram for great-circle distance from latlon-pos.

variogram (r)
Isotropic variogram of the model.
**property angles**
Rotation angles (in rad) of the model.

    Type numpy.ndarray

**property anis**
The anisotropy factors of the model.

    Type numpy.ndarray

**property anis_bounds**
Bounds for the nugget.

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Is a list of 2 or 3 values: [a, b] or [a, b, &lt;type&gt;] where &lt;type&gt; is one of &quot;oo&quot;, &quot;cc&quot;, &quot;oc&quot; or &quot;co&quot; to define if the bounds are open (&quot;o&quot;) or closed (&quot;c&quot;).</td>
</tr>
</tbody>
</table>

    Type list

**property arg**
Names of all arguments.

    Type list of str

**property arg_bounds**
Bounds for all parameters.

<table>
<thead>
<tr>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Keys are the arg names and values are lists of 2 or 3 values: [a, b] or [a, b, &lt;type&gt;] where &lt;type&gt; is one of &quot;oo&quot;, &quot;cc&quot;, &quot;oc&quot; or &quot;co&quot; to define if the bounds are open (&quot;o&quot;) or closed (&quot;c&quot;).</td>
</tr>
</tbody>
</table>

    Type dict

**property arg_list**
Values of all arguments.

    Type list of float

**property dim**
The dimension of the model.

    Type int

**property dist_func**
pdf, cdf and ppf.

    Spectral distribution info from the model.

    Type tuple of callable

**property do_rotation**
State if a rotation is performed.

    Type bool

**property field_dim**
The field dimension of the model.

    Type int

**property hankel_kw**
hankel.SymmetricFourierTransform.kwArgs.
Type `dict`

**property has_cdf**
State if a cdf is defined by the user.

Type `bool`

**property has_ppf**
State if a ppf is defined by the user.

Type `bool`

**property integral_scale**
The main integral scale of the model.

Raises `ValueError` – If integral scale is not setable.

Type `float`

**property integral_scale_vec**
The integral scales in each direction.

Notes
This is calculated by:

- \( \text{integral_scale_vec}[0] = \text{integral_scale} \)
- \( \text{integral_scale_vec}[1] = \text{integral_scale} \times \text{anis}[0] \)
- \( \text{integral_scale_vec}[2] = \text{integral_scale} \times \text{anis}[1] \)

Type `numpy.ndarray`

**property is_isotropic**
State if a model is isotropic.

Type `bool`

**property iso_arg**
Names of isotropic arguments.

Type `list of str`

**property iso_arg_list**
Values of isotropic arguments.

Type `list of float`

**property latlon**
Whether the model depends on geographical coords.

Type `bool`

**property len_low_rescaled**
Lower length scale truncation rescaled.

- \( \text{len_low_rescaled} = \frac{\text{len_low}}{\text{rescale}} \)

Type `float`

**property len_rescaled**
The rescaled main length scale of the model.

Type `float`

**property len_scale**
The main length scale of the model.
**property len_scale_bounds**

Bounds for the length scale.

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{type}]\) where \(<\text{type}>\) is one of "oc" or "cc" or "co" to define if the bounds are open ("o") or closed ("c").

**property len_scale_vec**

The length scales in each direction.

**Notes**

This is calculated by:

\[
\begin{align*}
\text{len_scale_vec}[0] &= \text{len_scale} \\
\text{len_scale_vec}[1] &= \text{len_scale} \times \text{anis}[0] \\
\text{len_scale_vec}[2] &= \text{len_scale} \times \text{anis}[1]
\end{align*}
\]

**property len_up**

Upper length scale truncation of the model.

\[
\text{len_up} = \text{len_low} + \text{len_scale}
\]

**property len_up_rescaled**

Upper length scale truncation rescaled.

\[
\text{len_up_rescaled} = (\text{len_low} + \text{len_scale}) / \text{rescale}
\]

**property name**

The name of the CovModel class.

**property nugget**

The nugget of the model.

**property nugget_bounds**

Bounds for the nugget.

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{type}]\) where \(<\text{type}>\) is one of "oc" or "cc" or "co" to define if the bounds are open ("o") or closed ("c").
property `opt_arg`
Names of the optional arguments.

Type list of str

property `opt_arg_bounds`
Bounds for the optional arguments.

Notes
Keys are the opt-arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>]
where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type dict

property `pykrige_angle`
2D rotation angle for pykrige.

property `pykrige_angle_x`
3D rotation angle around x for pykrige.

property `pykrige_angle_y`
3D rotation angle around y for pykrige.

property `pykrige_angle_z`
3D rotation angle around z for pykrige.

property `pykrige_anis`
2D anisotropy ratio for pykrige.

property `pykrige_anis_y`
3D anisotropy ratio in y direction for pykrige.

property `pykrige_anis_z`
3D anisotropy ratio in z direction for pykrige.

property `pykrige_kwargs`
Keyword arguments for pykrige routines.

property `rescale`
Rescale factor for the length scale of the model.

Type float

property `sill`
The sill of the variogram.

Notes
This is calculated by:

- \( \text{sill} = \text{variance} + \text{nugget} \)

Type float

property `var`
The variance of the model.

Type float
**property var_bounds**

Bounds for the variance.

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{type}]\) where \(<\text{type}>\) is one of "oc","cc","oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list

**property var_raw**

The raw variance of the model without factor.

(See. CovModel.var_factor)

**Type** float
gstools.covmodel.TPLExponential

class gstools.covmodel.TPLExponential(dim=3, var=1.0, len_scale=1.0, nugget=0.0, anis=1.0, angles=0.0, integral_scale=None, rescale=None, latlon=False, var_raw=None, hankel_kw=None, **opt_arg)

Bases: gstools.covmodel.tpl_models.TPLCovModel

Truncated-Power-Law with Exponential modes.

Notes

The truncated power law is given by a superposition of scale-dependent variograms [Federico1997]:

$$\gamma_{\ell_{\text{low}}, \ell_{\text{up}}}(r) = \int_{\ell_{\text{low}}}^{\ell_{\text{up}}} \gamma(r, \lambda) \frac{d\lambda}{\lambda}$$

with Exponential modes on each scale:

$$\gamma(r, \lambda) = \sigma^2(\lambda) \cdot \left(1 - \exp \left[-\frac{r}{\lambda}\right]\right)$$

$$\sigma^2(\lambda) = C \cdot \lambda^{2H}$$

This results in:

$$\gamma_{\ell_{\text{low}}, \ell_{\text{up}}}(r) = \sigma^2_{\ell_{\text{low}}, \ell_{\text{up}}} \cdot \left(1 - 2H \cdot \frac{\ell_{\text{up}}^{2H} \cdot E_{1+2H} \left[\frac{r}{\ell_{\text{up}}}\right] - \ell_{\text{low}}^{2H} \cdot E_{1+2H} \left[\frac{r}{\ell_{\text{low}}}\right]}{\ell_{\text{up}}^{2H} - \ell_{\text{low}}^{2H}}\right)$$

$$\sigma^2_{\ell_{\text{low}}, \ell_{\text{up}}} = \frac{C \cdot (\ell_{\text{up}}^{2H} - \ell_{\text{low}}^{2H})}{2H}$$

The “length scale” of this model is equivalent by the integration range:

$$\ell = \ell_{\text{up}} - \ell_{\text{low}}$$

If you want to define an upper scale truncation, you should set len_low and len_scale accordingly.

The following Parameters occur:

- \(C > 0\): scaling factor from the Power-Law (intensity of variation) This parameter will be calculated internally by the given variance. You can access C directly by model.var_raw
- \(0 < H < \frac{1}{2}\): hurst coefficient (model.hurst)
- \(\ell_{\text{low}} \geq 0\): lower length scale truncation of the model (model.len_low)
- \(\ell_{\text{up}} \geq 0\): upper length scale truncation of the model (model.len_up)

This will be calculated internally by:

- \(\ell_{\text{up}} = \ell_{\text{low}} + \text{len_scale}\)

That means, that the len_scale in this model actually represents the integration range for the truncated power law.

- \(E_s(x)\) is the exponential integral.
References

Other Parameters

- **hurst** *(float, optional)* – Hurst coefficient of the power law. Standard range: \((0, 1)\). Default: 0.5

- **len_low** *(float, optional)* – The lower length scale truncation of the model. Standard range: \([0, \infty)\). Default: 0.0

Parameters

- **dim** *(int, optional)* – dimension of the model. Default: 3

- **var** *(float, optional)* – variance of the model (the nugget is not included in “this” variance) Default: 1.0

- **len_scale** *(float or list, optional)* – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, anis will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0

- **nugget** *(float, optional)* – nugget of the model. Default: 0.0

- **anis** *(float or list, optional)* – anisotropy ratios in the transversal directions \([e_y, e_z]\).
  - \(e_y = l_y / l_x\)
  - \(e_z = l_z / l_x\)

  If only one value is given in 3D, \(e_y\) will be set to 1. This value will be ignored, if multiple len_scales are given. Default: 1.0

- **angles** *(float or list, optional)* – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)

  Default: 0.0

- **integral_scale** *(float or list or None, optional)* – If given, len_scale will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None

- **rescale** *(float or None, optional)* – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None

- **latlon** *(bool, optional)* – Whether the model is describing 2D fields on earths surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance \(r\) will be replaced by \(2 \sin(\alpha/2)\), where \(\alpha\) is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, dim will be set to 3 and anisotropy will be disabled. rescale can be set to e.g. earth’s radius, to have a meaningful len_scale parameter. Default: False

- **var_raw** *(float or None, optional)* – raw variance of the model which will be multiplied with CovModel.var_factor to result in the actual variance. If given, var will be ignored. (This is just for models that override CovModel.var_factor) Default: None

- **hankel_kw** *(dict or None, optional)* – Modify the init-arguments of hankel. SymmetricFourierTransform used for the spectrum calculation. Use with
caution (Better: Don’t!). None is equivalent to \{"a": -1, "b": 1, "N": 1000, "h": 0.001\}. Default: None

- **opt_arg** – Optional arguments are covered by these keyword arguments. If present, they are described in the section Other Parameters.

Attributes

- **angles** numpy.ndarray: Rotation angles (in rad) of the model.
- **anis** numpy.ndarray: The anisotropy factors of the model.
- **anis_bounds** list: Bounds for the nugget.
- **arg** list of str: Names of all arguments.
- **arg_bounds** dict: Bounds for all parameters.
- **arg_list** list of float: Values of all arguments.
- **dim** int: The dimension of the model.
- **dist_func** tuple of callable: pdf, cdf and ppf.
- **do_rotation** bool: State if a rotation is performed.
- **field_dim** int: The field dimension of the model.
- **hankel_kw** dict: hankel.SymmetricFourierTransform kwargs.
- **has_cdf** bool: State if a cdf is defined by the user.
- **has_ppf** bool: State if a ppf is defined by the user.
- **integral_scale** float: The main integral scale of the model.
- **integral_scale_vec** numpy.ndarray: The integral scales in each direction.
- **is_isotropic** bool: State if a model is isotropic.
- **iso_arg** list of str: Names of isotropic arguments.
- **iso_arg_list** list of float: Values of isotropic arguments.
- **latlon** bool: Whether the model depends on geographical coords.
- **len_low_rescaled** float: Lower length scale truncation rescaled.
- **len_rescaled** float: The rescaled main length scale of the model.
- **len_scale** float: The main length scale of the model.
- **len_scale_bounds** list: Bounds for the length scale.
- **len_scale_vec** numpy.ndarray: The length scales in each direction.
- **len_up** float: Upper length scale truncation of the model.
- **len_up_rescaled** float: Upper length scale truncation rescaled.
- **name** str: The name of the CovModel class.
- **nugget** float: The nugget of the model.
- **nugget_bounds** list: Bounds for the nugget.
- **opt_arg** list of str: Names of the optional arguments.
- **opt_arg_bounds** dict: Bounds for the optional arguments.
- **pykrige_angle** 2D rotation angle for pykrige.
- **pykrige_angle_x** 3D rotation angle around x for pykrige.
- **pykrige_angle_y** 3D rotation angle around y for pykrige.
- **pykrige_angle_z** 3D rotation angle around z for pykrige.
**pykridge_anis** 2D anisotropy ratio for pykridge.

**pykridge_anis_y** 3D anisotropy ratio in y direction for pykridge.

**pykridge_anis_z** 3D anisotropy ratio in z direction for pykridge.

**pykridge_kwargs** Keyword arguments for pykridge routines.

**rescale** `float`: Rescale factor for the length scale of the model.

**sill** `float`: The sill of the variogram.

**var** `float`: The variance of the model.

**var_bounds** `list`: Bounds for the variance.

**var_raw** `float`: The raw variance of the model without factor.

## Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>anisometrize(pos)</code></td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td><code>calc_integral_scale()</code></td>
<td>Calculate the integral scale of the isotropic model.</td>
</tr>
<tr>
<td><code>check_arg_bounds()</code></td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td><code>check_dim(dim)</code></td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td><code>check_opt_arg()</code></td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td><code>cor(h)</code></td>
<td>TPL with Exponential modes - normalized correlation function.</td>
</tr>
<tr>
<td><code>cor_axis(r[, axis])</code></td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td><code>cor_spatial(pos)</code></td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>cor_yadrenko(zeta)</code></td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>correlation(r)</code></td>
<td>TPL with Exponential modes - correlation function.</td>
</tr>
<tr>
<td><code>cov_axis(r[, axis])</code></td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td><code>cov_nugget(r)</code></td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><code>cov_spatial(pos)</code></td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><code>cov_yadrenko(zeta)</code></td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><code>covariance(r)</code></td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td><code>default_arg_bounds()</code></td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td><code>default_opt_arg()</code></td>
<td>Defaults for the optional arguments.</td>
</tr>
<tr>
<td><code>default_opt_arg_bounds()</code></td>
<td>Defaults for boundaries of the optional arguments.</td>
</tr>
<tr>
<td><code>default_rescale()</code></td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td><code>fit_variogram(x_data, y_data[, anis, sill, ...])</code></td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td><code>fix_dim()</code></td>
<td>Set a fix dimension for the model.</td>
</tr>
<tr>
<td><code>isometrize(pos)</code></td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td><code>ln_spectral_rad_pdf(r)</code></td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td><code>main_axes()</code></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><code>percentile_scale([per])</code></td>
<td>Calculate the percentile scale of the isotropic model.</td>
</tr>
<tr>
<td><code>plot([func])</code></td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td><code>pykridge_vario([args, r])</code></td>
<td>Isotropic variogram of the model for pykridge.</td>
</tr>
<tr>
<td><code>set_arg_bounds([check_args])</code></td>
<td>Set bounds for the parameters of the model.</td>
</tr>
</tbody>
</table>

3.6. gstools.covmodel 299
Table 29 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>spectral_density(k)</td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td>spectral_rad_pdf(r)</td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td>spectrum(k)</td>
<td>Spectrum of the covariance model.</td>
</tr>
<tr>
<td>var_factor()</td>
<td>Factor for C (intensity of variation) to result in variance.</td>
</tr>
<tr>
<td>vario_axis(r[, axis])</td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td>vario_nugget(r)</td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td>vario_spatial(pos)</td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>vario_yadrenko(zeta)</td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>variogram(r)</td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

anisometrize(pos)
Bring a position tuple into the anisotropic coordinate-system.

calc_integral_scale()
Calculate the integral scale of the isotrope model.

check_arg_bounds()
Check arguments to be within their given bounds.

check_dim(dim)
Check the given dimension.

check_opt_arg()
Run checks for the optional arguments.
This is in addition to the bound-checks

Notes
- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

cor(h)
TPL with Exponential modes - normalized correlation function.

cor_axis(r, axis=0)
Correlation along axis of anisotropy.

cor_spatial(pos)
Spatial correlation respecting anisotropy and rotation.

cor_yadrenko(zeta)
Yadrenko correlation for great-circle distance from latlon-pos.

correlation(r)
TPL with Exponential modes - correlation function.

cov_axis(r, axis=0)
Covariance along axis of anisotropy.

cov_nugget(r)
Isotropic covariance of the model respecting the nugget at r=0.

cov_spatial(pos)
Spatial covariance respecting anisotropy and rotation.
**cov_yadrenko** *(zeta)*
Yadrenko covariance for great-circle distance from latlon-pos.

**covariance** *(r)*
Covariance of the model.

**default_arg_bounds** *
Provide default boundaries for arguments.
Given as a dictionary.

**default_opt_arg** *
Defaults for the optional arguments.

• {"hurst": 0.25, "len_low": 0.0}

Returns  Defaults for optional arguments
Return type  dict

**default_opt_arg_bounds** *
Defaults for boundaries of the optional arguments.

• {"hurst": [0, 1, "oo"], "len_low": [0, inf, "cc"]}

Returns  Boundaries for optional arguments
Return type  dict

**default_rescale** *
Provide default rescaling factor.

**fit_variogram** *(x_data, y_data, anis=True, sill=None, init_guess='default', weights=None, method='trf', loss='soft_l1', max_eval=None, return_r2=False, curve_fit_kwargs=None, **para_select)*
Fitting the variogram-model to an empirical variogram.

Parameters

• **x_data** *(numpy.ndarray)* – The bin-centers of the empirical variogram.

• **y_data** *(numpy.ndarray)* – The measured variogram. If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.

• **anis** *(bool, optional)* – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios won’t be altered during fitting. Default: True

• **sill** *(float or bool, optional)* – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:

  – sill = var + nugget

  – if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.

  If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None

• **init_guess** *(str or dict, optional)* – Initial guess for the estimation. Either:

  – ”default”: using the default values of the covariance model (“len_scale” will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))
- “current”: using the current values of the covariance model
- dict: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above ("default" by default)) Example: {"len_scale": 10, "default": "current"}

Default: “default”

- **weights** *(str, numpy.ndarray, callable, optional)* – Weights applied to each point in the estimation. Either:
  - ‘inv’: inverse distance 1 / (x_data + 1)
  - list: weights given per bin
  - callable: function applied to x_data

If callable, it must take a 1-d ndarray. Then weights = f(x_data). Default: None

- **method** *({'trf', 'dogbox'}, optional)* – Algorithm to perform minimization.
  - ‘trf’ : Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
  - ‘dogbox’ : dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

Default: ‘trf’

- **loss** *(str or callable, optional)* – Determines the loss function in scipy’s curve_fit. The following keyword values are allowed:
  - ‘linear’ (default): \( \rho(z) = z \). Gives a standard least-squares problem.
  - ‘soft_l1’: \( \rho(z) = 2 * ((1 + z)**0.5 - 1) \). The smooth approximation of \( l1 \) (absolute value) loss. Usually a good choice for robust least squares.
  - ‘huber’ : \( \rho(z) = z \) if \( z \leq 1 \) else \( 2*z**0.5 - 1 \). Works similarly to ‘soft_l1’.
  - ‘cauchy’ : \( \rho(z) = \ln(1 + z) \). Severely weakens outliers influence, but may cause difficulties in optimization process.
  - ‘arctan’ : \( \rho(z) = \arctan(z) \). Limits a maximum loss on a single residual, has properties similar to ‘cauchy’.

If callable, it must take a 1-d ndarray \( z=f**2 \) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_l1’

- **max_eval** *(int or None, optional)* – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

- **return_r2** *(bool, optional)* – Whether to return the r2 score of the estimation. Default: False

- **curve_fit_kwargs** *(dict, optional)* – Other keyword arguments passed to scipy’s curve_fit. Default: None

- **para_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters won’t be fitted. By default, all parameters are fitted.

**Returns**
• **fit_para** (dict) – Dictionary with the fitted parameter values

• **pcov** (numpy.ndarray) – The estimated covariance of popt from scipy.optimize.curve_fit. To compute one standard deviation errors on the parameters use
  \[ \text{perr} = \text{np.sqrt}(\text{np.diag}(\text{pcov})) \].

• **r2_score** (float, optional) – r2 score of the curve fitting results. Only if return_r2 is True.

Notes

You can set the bounds for each parameter by accessing CovModel.set_arg_bounds. The fitted parameters will be instantly set in the model.

**fix_dim()**
Set a fix dimension for the model.

**isometrize(pos)**
Make a position tuple ready for isotropic operations.

**ln_spectral_rad_pdf(r)**
Log radial spectral density of the model.

**main_axes()**
Axes of the rotated coordinate-system.

**percentile_scale(per=0.9)**
Calculate the percentile scale of the isotrope model.
This is the distance, where the given percentile of the variance is reached by the variogram.

**plot(func='variogram', **kwargs)**
Plot a function of a the CovModel.

Parameters

• **func** (str, optional) – Function to be plotted. Could be one of:
  - "variogram"
  - "covariance"
  - "correlation"
  - "vario_spatial"
  - "cov_spatial"
  - "cor_spatial"
  - "vario_yadrenko"
  - "cov_yadrenko"
  - "cor_yadrenko"
  - "vario_axis"
  - "cov_axis"
  - "cor_axis"
  - "spectrum"
  - "spectral_density"
  - "spectral_rad_pdf"

• **kwargs** – Keyword arguments forwarded to the plotting function "plot_" + func in gtools.covmodel.plot.
See also:

gstools.covmodel.plot

**pykrige_vario** *(args=None, r=0)*

Isotropic variogram of the model for pykrige.

**set_arg_bounds** *(check_args=True, **kwargs)*

Set bounds for the parameters of the model.

**Parameters**

- **check_args** *(bool, optional)* – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True

- ****kwargs** – Parameter name as keyword ("var", “len_scale”, “nugget”, <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**spectral_density** *(k)*

Spectral density of the covariance model.

This is given by:

$$\tilde{S}(k) = \frac{S(k)}{\sigma^2}$$

Where $S(k)$ is the spectrum of the covariance model.

**Parameters**

- **k** *(float)* – Radius of the phase: $k = ||k||$

**spectral_rad_pdf** *(r)*

Radial spectral density of the model.

**spectraum** *(k)*

Spectrum of the covariance model.

This is given by:

$$S(k) = \left(\frac{1}{2\pi}\right)^n \int C(r) e^{ik \cdot r} d^n r$$

Internally, this is calculated by the hankel transformation:

$$S(k) = \left(\frac{1}{2\pi}\right)^n \cdot \frac{(2\pi)^{n/2}}{k^{n/2-1}} \int_0^\infty r^{n/2} C(r) J_{n/2-1}(kr) dr$$

Where $C(r)$ is the covariance function of the model.

**Parameters**

- **k** *(float)* – Radius of the phase: $k = ||k||$

**var_factor** *

Factor for C (intensity of variation) to result in variance.

**vario_axis** *(r, axis=0)*

Variogram along axis of anisotropy.

**vario_nugget** *(r)*

Isotropic variogram of the model respecting the nugget at r=0.

**vario_spatial** *(pos)*

Spatial variogram respecting anisotropy and rotation.

**vario_yadrenko** *(zeta)*

Yadrenko variogram for great-circle distance from latlon-pos.

**variogram** *(r)*

Isotropic variogram of the model.
property angles
Rotation angles (in rad) of the model.
Type numpy.ndarray

property anis
The anisotropy factors of the model.
Type numpy.ndarray

property anis_bounds
Bounds for the nugget.
Notes
Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").
Type list

property arg
Names of all arguments.
Type list of str

property arg_bounds
Bounds for all parameters.
Notes
Keys are the arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").
Type dict

property arg_list
Values of all arguments.
Type list of float

property dim
The dimension of the model.
Type int

property dist_func
df, cdf and ppf.
Spectral distribution info from the model.
Type tuple of callable

property do_rotation
State if a rotation is performed.
Type bool

property field_dim
The field dimension of the model.
Type int

property hankel_kw
hankel.SymmetricFourierTransform kwars.
Type `dict`

**property has_cdf**
State if a cdf is defined by the user.

Type `bool`

**property has_ppf**
State if a ppf is defined by the user.

Type `bool`

**property integral_scale**
The main integral scale of the model.

Raises `ValueError` – If integral scale is not setable.

Type `float`

**property integral_scale_vec**
The integral scales in each direction.

Notes
This is calculated by:

- integral_scale_vec[0] = integral_scale
- integral_scale_vec[1] = integral_scale * anis[0]

Type `numpy.ndarray`

**property is_isotropic**
State if a model is isotropic.

Type `bool`

**property iso_arg**
Names of isotropic arguments.

Type `list of str`

**property iso_arg_list**
Values of isotropic arguments.

Type `list of float`

**property latlon**
Whether the model depends on geographical coords.

Type `bool`

**property len_low_rescaled**
Lower length scale truncation rescaled.

\[
\text{len_low_rescaled} = \frac{\text{len_low}}{\text{rescale}}
\]

Type `float`

**property len_rescaled**
The rescaled main length scale of the model.

Type `float`

**property len_scale**
The main length scale of the model.
**property len_scale_bounds**

Bounds for the length scale.

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**property len_scale_vec**

The length scales in each direction.

**Notes**

This is calculated by:

- \(\text{len_scale_vec}[0] = \text{len_scale}\)
- \(\text{len_scale_vec}[1] = \text{len_scale} \times \text{anis}[0]\)
- \(\text{len_scale_vec}[2] = \text{len_scale} \times \text{anis}[1]\)

**property len_up**

Upper length scale truncation of the model.

- \(\text{len_up} = \text{len_low} + \text{len_scale}\)

**property len_up_rescaled**

Upper length scale truncation rescaled.

- \(\text{len_up_rescaled} = (\text{len_low} + \text{len_scale}) / \text{rescale}\)

**property name**

The name of the CovModel class.

**property nugget**

The nugget of the model.

**property nugget_bounds**

Bounds for the nugget.

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").
property opt_arg
    Names of the optional arguments.
    Type list of str

property opt_arg_bounds
    Bounds for the optional arguments.
    Notes
    Keys are the opt-arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>]
    where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").
    Type dict

property pykrige_angle
    2D rotation angle for pykrige.

property pykrige_angle_x
    3D rotation angle around x for pykrige.

property pykrige_angle_y
    3D rotation angle around y for pykrige.

property pykrige_angle_z
    3D rotation angle around z for pykrige.

property pykrige_anis
    2D anisotropy ratio for pykrige.

property pykrige_anis_y
    3D anisotropy ratio in y direction for pykrige.

property pykrige_anis_z
    3D anisotropy ratio in z direction for pykrige.

property pykrige_kwargs
    Keyword arguments for pykrige routines.

property rescale
    Rescale factor for the length scale of the model.
    Type float

property sill
    The sill of the variogram.
    Notes
    This is calculated by:
    • sill = variance + nugget
    Type float

property var
    The variance of the model.
    Type float
property var_bounds
   Bounds for the variance.

   Notes
   Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oc", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

   Type list

property var_raw
   The raw variance of the model without factor.

   (See. CovModel.var_factor)

   Type float
The truncated power law is given by a superposition of scale-dependent variograms:

\[ \gamma_{\ell_{\text{low}}, \ell_{\text{up}}}(r) = \int_{\ell_{\text{low}}}^{\ell_{\text{up}}} \gamma(r, \lambda) \frac{d\lambda}{\lambda} \]

with Stable modes on each scale:

\[ \gamma(r, \lambda) = \sigma^2(\lambda) \cdot \left(1 - \exp \left[-\left(\frac{r}{\lambda}\right)^\alpha\right]\right) \]

\[ \sigma^2(\lambda) = C \cdot \lambda^{2H} \]

This results in:

\[ \gamma_{\ell_{\text{low}}, \ell_{\text{up}}}(r) = \sigma^2_{\ell_{\text{low}}, \ell_{\text{up}}} \cdot \left(1 - \frac{2H}{\alpha} \cdot \frac{2H + 2H}{\ell_{\text{up}}^{2H} \cdot E_{1 + 2H} \left[\left(\frac{r}{\ell_{\text{up}}}^{2H}\right)\right] - \ell_{\text{low}}^{2H} \cdot E_{1 + 2H} \left[\left(\frac{r}{\ell_{\text{low}}}^{2H}\right)\right]}{2H}\right) \]

\[ \sigma^2_{\ell_{\text{low}}, \ell_{\text{up}}} = \frac{C \cdot (\ell_{\text{up}}^{2H} - \ell_{\text{low}}^{2H})}{2H} \]

The “length scale” of this model is equivalent by the integration range:

\[ \ell = \ell_{\text{up}} - \ell_{\text{low}} \]

If you want to define an upper scale truncation, you should set `len_low` and `len_scale` accordingly.

The following Parameters occur:

- \(0 < \alpha \leq 2\): The shape parameter of the Stable model.
  - \(\alpha = 1\): Exponential modes
  - \(\alpha = 2\): Gaussian modes
- \(C > 0\): scaling factor from the Power-Law (intensity of variation) This parameter will be calculated internally by the given variance. You can access C directly by `model.var_raw`
- \(0 < H < \frac{\alpha}{2}\): hurst coefficient (`model.hurst`)
- \(\ell_{\text{low}} \geq 0\): lower length scale truncation of the model (`model.len_low`)
- \(\ell_{\text{up}} \geq 0\): upper length scale truncation of the model (`model.len_up`)

This will be calculated internally by:

- \(\text{len_up} = \text{len_low} + \text{len_scale}\)

That means, that the `len_scale` in this model actually represents the integration range for the truncated power law.

- \(E_s(x)\) is the exponential integral.

**Other Parameters**
• **hurst** (*float*, optional) – Hurst coefficient of the power law. Standard range: \((0, 1]\). Default: 0.5

• **alpha** (*float*, optional) – Shape parameter of the stable model. Standard range: \((0, 2]\). Default: 1.5

• **len_low** (*float*, optional) – The lower length scale truncation of the model. Standard range: \([0, \infty]\). Default: 0.0

**Parameters**

• **dim** (*int*, optional) – dimension of the model. Default: 3

• **var** (*float*, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0

• **len_scale** (*float or list*, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, **anis** will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0

• **nugget** (*float*, optional) – nugget of the model. Default: 0.0

• **anis** (*float or list*, optional) – anisotropy ratios in the transversal directions \([e_y, e_z]\).
  - \(e_y = l_y / l_x\)
  - \(e_z = l_z / l_x\)

  If only one value is given in 3D, \(e_y\) will be set to 1. This value will be ignored, if multiple \(\text{len\_scales}\) are given. Default: 1.0

• **angles** (*float or list*, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)

  Default: 0.0

• **integral_scale** (*float or list or None*, optional) – If given, **len\_scale** will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None

• **rescale** (*float or None*, optional) – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None

• **latlon** (*bool*, optional) – Whether the model is describing 2D fields on earths surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance \(r\) will be replaced by \(2 \sin(\alpha / 2)\), where \(\alpha\) is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, \(\text{dim}\) will be set to 3 and anisotropy will be disabled. **rescale** can be set to e.g. earth’s radius, to have a meaningful \(\text{len\_scale}\) parameter. Default: False

• **var_raw** (*float or None*, optional) – raw variance of the model which will be multiplied with **CovModel.var\_factor** to result in the actual variance. If given, **var** will be ignored. (This is just for models that override **CovModel.var\_factor**) Default: None

• **hankel_kw** (*dict or None*, optional) – Modify the init-arguments of **hankel. SymmetricFourierTransform** used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to \({"a": -1, "b": 1, "N": 1000, "h": 0.001}\). Default: None
Optional arguments are covered by these keyword arguments. If present, they are described in the section Other Parameters.

Attributes

- **angles** (numpy.ndarray): Rotation angles (in rad) of the model.
- **anis** (numpy.ndarray): The anisotropy factors of the model.
- **anis_bounds** (list): Bounds for the nugget.
- **arg** (list of str): Names of all arguments.
- **arg_bounds** (dict): Bounds for all parameters.
- **arg_list** (list of float): Values of all arguments.
- **dim** (int): The dimension of the model.
- **dist_func** (tuple of callable): pdf, cdf and ppf.
- **do_rotation** (bool): State if a rotation is performed.
- **field_dim** (int): The field dimension of the model.
- **hankel_kw** (dict): hankel.SymmetricFourierTransform kwargs.
- **has_cdf** (bool): State if a cdf is defined by the user.
- **has_ppf** (bool): State if a ppf is defined by the user.
- **integral_scale** (float): The main integral scale of the model.
- **integral_scale_vec** (numpy.ndarray): The integral scales in each direction.
- **is_isotropic** (bool): State if a model is isotropic.
- **iso_arg** (list of str): Names of isotropic arguments.
- **iso_arg_list** (list of float): Values of isotropic arguments.
- **latlon** (bool): Whether the model depends on geographical coords.
- **len_low_rescaled** (float): Lower length scale truncation rescaled.
- **len_rescaled** (float): The rescaled main length scale of the model.
- **len_scale** (float): The main length scale of the model.
- **len_scale_bounds** (list): Bounds for the lenght scale.
- **len_scale_vec** (numpy.ndarray): The length scales in each direction.
- **len_up** (float): Upper length scale truncation of the model.
- **len_up_rescaled** (float): Upper length scale truncation rescaled.
- **name** (str): The name of the CovModel class.
- **nugget** (float): The nugget of the model.
- **nugget_bounds** (list): Bounds for the nugget.
- **opt_arg** (list of str): Names of the optional arguments.
- **opt_arg_bounds** (dict): Bounds for the optional arguments.
- **pykrige_angle** 2D rotation angle for pykrige.
- **pykrige_angle_x** 3D rotation angle around x for pykrige.
- **pykrige_angle_y** 3D rotation angle around y for pykrige.
- **pykrige_angle_z** 3D rotation angle around z for pykrige.
- **pykrige_anis** 2D anisotropy ratio for pykrige.
**pykrige_anis_y** 3D anisotropy ratio in y direction for pykrige.

**pykrige_anis_z** 3D anisotropy ratio in z direction for pykrige.

**pykrige_kwarg**s Keyword arguments for pykrige routines.

**rescale** float: Rescale factor for the length scale of the model.

**sill** float: The sill of the variogram.

**var** float: The variance of the model.

**var_bounds** list: Bounds for the variance.

**var_raw** float: The raw variance of the model without factor.

## Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>anisometrize</strong>(pos)</td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td><strong>calc_integral_scale()</strong></td>
<td>Calculate the integral scale of the isotrope model.</td>
</tr>
<tr>
<td><strong>check_arg_bounds()</strong></td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td><strong>check_dim(dim)</strong></td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td><strong>check_opt_arg()</strong></td>
<td>Check the optional arguments.</td>
</tr>
<tr>
<td><strong>cor</strong>(h)</td>
<td>TPL with Stable modes - normalized correlation function.</td>
</tr>
<tr>
<td><strong>cor_axis</strong>(r[, axis])</td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cor_spatial</strong>(pos)</td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cor_yadrenko</strong>(zeta)</td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>correlation</strong>(r)</td>
<td>TPL with Stable modes - correlation function.</td>
</tr>
<tr>
<td><strong>cov_axis</strong>(r[, axis])</td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td><strong>cov_nugget</strong>(r)</td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td><strong>cov_spatial</strong>(pos)</td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td><strong>cov_yadrenko</strong>(zeta)</td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td><strong>covariance</strong>(r)</td>
<td>Covariance of the model.</td>
</tr>
<tr>
<td><strong>default_arg_bounds()</strong></td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td><strong>default_opt_arg()</strong></td>
<td>Defaults for the optional arguments.</td>
</tr>
<tr>
<td><strong>default_opt_arg_bounds()</strong></td>
<td>Defaults for boundaries of the optional arguments.</td>
</tr>
<tr>
<td><strong>default_rescale()</strong></td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td><strong>fit_variogram</strong>(x_data, y_data[, anis, sill, ...])</td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td><strong>fix_dim()</strong></td>
<td>Set a fix dimension for the model.</td>
</tr>
<tr>
<td><strong>isometrize</strong>(pos)</td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td><strong>ln_spectral_rad_pdf</strong>(r)</td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td><strong>main_axes()</strong></td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td><strong>percentile_scale</strong>(per)</td>
<td>Calculate the percentile scale of the isotrope model.</td>
</tr>
<tr>
<td><strong>plot</strong>(func)</td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td><strong>pykrige_vario</strong>(args, rl)</td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td><strong>set_arg_bounds</strong>(check_args)</td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td><strong>spectral_density</strong>(k)</td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td><strong>spectral_rad_pdf</strong>(r)</td>
<td>Radial spectral density of the model.</td>
</tr>
</tbody>
</table>

continues on next page
Table 30 – continued from previous page

- **spectrum** \((k)\)
  - Spectrum of the covariance model.

- **var_factor** ()
  - Factor for \(C\) (intensity of variation) to result in variance.

- **vario_axis** \((r[, axis])\)
  - Variogram along axis of anisotropy.

- **vario_nugget** \((r)\)
  - Isotropic variogram of the model respecting the nugget at \(r=0\).

- **vario_spatial** \((pos)\)
  - Spatial variogram respecting anisotropy and rotation.

- **vario_yadrenko** \((zeta)\)
  - Yadrenko variogram for great-circle distance from latlon-pos.

- **variogram** \((r)\)
  - Isotropic variogram of the model.

---

anisometrize \((pos)\)
- Bring a position tuple into the anisotropic coordinate-system.

calc_integral_scale ()
- Calculate the integral scale of the isotrope model.

check_arg_bounds ()
- Check arguments to be within their given bounds.

check_dim \((dim)\)
- Check the given dimension.

check_opt_arg ()
- Check the optional arguments.

  **Warns alpha** – If alpha is < 0.3, the model tends to a nugget model and gets numerically unstable.

cor \((h)\)
- TPL with Stable modes - normalized correlation function.

cor_axis \((r[, axis=0])\)
- Correlation along axis of anisotropy.

cor_spatial \((pos)\)
- Spatial correlation respecting anisotropy and rotation.

cor_yadrenko \((zeta)\)
- Yadrenko correlation for great-circle distance from latlon-pos.

correlation \((r)\)
- TPL with Stable modes - correlation function.

cov_axis \((r[, axis=0])\)
- Covariance along axis of anisotropy.

cov_nugget \((r)\)
- Isotropic covariance of the model respecting the nugget at \(r=0\).

cov_spatial \((pos)\)
- Spatial covariance respecting anisotropy and rotation.

cov_yadrenko \((zeta)\)
- Yadrenko covariance for great-circle distance from latlon-pos.

covariance \((r)\)
- Covariance of the model.

default_arg_bounds ()
- Provide default boundaries for arguments.
- Given as a dictionary.
**default_opt_arg()**
Defaults for the optional arguments.

- {"hurst": 0.5, "alpha": 1.5, "len_low": 0.0}

**Returns**  Defaults for optional arguments

**Return type**  dict

**default_opt_arg_bounds()**
Defaults for boundaries of the optional arguments.

- {"hurst": [0, 1, "oo"], "alpha": [0, 2, "oc"], "len_low": [0, inf, "cc"]}

**Returns**  Boundaries for optional arguments

**Return type**  dict

**default_rescale()**
Provide default rescaling factor.

**fit_variogram(x_data, y_data, anis=True, sill=None, init_guess='default', weights=None, method='trf', loss='soft_l1', max_eval=None, return_r2=False, curve_fit_kwargs=None, **para_select)**
Fitting the variogram-model to an empirical variogram.

**Parameters**

- **x_data** *(numpy.ndarray)* – The bin-centers of the empirical variogram.

- **y_data** *(numpy.ndarray)* – The measured variogram. If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.

- **anis** *(bool, optional)* – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios wont be altered during fitting. Default: True

- **sill** *(float or bool, optional)* – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:
  - sill = var + nugget
  - if the variance is bigger than the sill, nugget will bet set to its lower bound and the variance will be set to the fitting partial sill.

  If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deslected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None

- **init_guess** *(str or dict, optional)* – Initial guess for the estimation. Either:
  - "default": using the default values of the covariance model (“len_scale” will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))
  - "current": using the current values of the covariance model
  - dict: dictionary with parameter names and given value (separate “default” can bet set to “default” or “current” for unspecified values to get same behavior as given above (“default” by default)) Example: {"len_scale": 10, "default": "current"}

  Default: “default”
weights (str, numpy.ndarray, callable, optional) – Weights applied to each point in the estimation. Either:

- 'inv': inverse distance 1 / (x_data + 1)
- list: weights given per bin
- callable: function applied to x_data

If callable, it must take a 1-d ndarray. Then weights = f(x_data). Default: None

method ({'trf', 'dogbox'}, optional) – Algorithm to perform minimization.

- 'trf': Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
- 'dogbox': dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

Default: 'trf'

loss (str or callable, optional) – Determines the loss function in scipy's curve_fit. The following keyword values are allowed:

- 'linear' (default): \( \rho(z) = z \). Gives a standard least-squares problem.
- 'soft_l1': \( \rho(z) = 2 * ((1 + z)^{0.5} - 1) \). The smooth approximation of \( L1 \) (absolute value) loss. Usually a good choice for robust least squares.
- 'huber': \( \rho(z) = z \) if \( z \leq 1 \) else \( 2z^{0.5} - 1 \). Works similarly to 'soft_l1'.
- 'cauchy': \( \rho(z) = \ln(1 + z) \). Severely weakens outliers influence, but may cause difficulties in optimization process.
- 'arctan': \( \rho(z) = \arctan(z) \). Limits a maximum loss on a single residual, has properties similar to 'cauchy'.

If callable, it must take a 1-d ndarray \( z=f^2 \) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: 'soft_l1'

max_eval (int or None, optional) – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

return_r2 (bool, optional) – Whether to return the r2 score of the estimation. Default: False

curve_fit_kwargs (dict, optional) – Other keyword arguments passed to scipy's curve_fit. Default: None

**para_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters won't be fitted. By default, all parameters are fitted.

Returns

- fit_para (dict) – Dictionary with the fitted parameter values
- pcov (numpy.ndarray) – The estimated covariance of popt from scipy.optimize.curve_fit. To compute one standard deviation errors on the parameters use perr = np.sqrt(np.diag(pcov)).
- r2_score (float, optional) – r2 score of the curve fitting results. Only if return_r2 is True.
Notes

You can set the bounds for each parameter by accessing `CovModel.set_arg_bounds`. The fitted parameters will be instantly set in the model.

```python
fix_dim()
```
Set a fix dimension for the model.

```python
isometrize(pos)
```
Make a position tuple ready for isotropic operations.

```python
ln_spectral_rad_pdf(r)
```
Log radial spectral density of the model.

```python
main_axes()
```
Axes of the rotated coordinate-system.

```python
percentile_scale(per=0.9)
```
Calculate the percentile scale of the isotrope model. This is the distance, where the given percentile of the variance is reached by the variogram.

```python
plot(func='variogram', **kwargs)
```
Plot a function of a the CovModel.

**Parameters**

- `func (str, optional)` – Function to be plotted. Could be one of:
  - ”variogram”
  - ”covariance”
  - ”correlation”
  - ”vario_spatial”
  - ”cov_spatial”
  - ”cor_spatial”
  - ”vario_yadrenko”
  - ”cov_yadrenko”
  - ”cor_yadrenko”
  - ”vario_axis”
  - ”cov_axis”
  - ”cor_axis”
  - ”spectrum”
  - ”spectral_density”
  - ”spectral_rad_pdf”
- `**kwargs` – Keyword arguments forwarded to the plotting function “plot_” + `func` in `gstools.covmodel.plot`.

See also:

- `gstools.covmodel.plot`

```python
pykrige_vario(args=None, r=0)
```
Isotropic variogram of the model for pykrige.

```python
set_arg_bounds(check_args=True, **kwargs)
```
Set bounds for the parameters of the model.
Parameters

- **check_args** (`bool`, *optional*) — Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True

- ****kwargs** — Parameter name as keyword (“var”, “len_scale”, “nugget”, <opt_arg>) and a list of 2 or 3 values: `[a, b]` or `[a, b, <type>]` where `<type>` is one of “oo”, “cc”, “oc” or “co” to define if the bounds are open (“o”) or closed (“c”).

**spectral_density** (`k`)

Spectral density of the covariance model.

This is given by:

$$ \tilde{S}(k) = \frac{S(k)}{\sigma^2} $$

Where $S(k)$ is the spectrum of the covariance model.

**Parameters**

- **k** (`float`) — Radius of the phase: $k = ||k||$

**spectral_rad_pdf** (`r`)

Radial spectral density of the model.

**spectrum** (`k`)

Spectrum of the covariance model.

This is given by:

$$ S(k) = \left(\frac{1}{2\pi}\right)^n C(r) e^{ik \cdot r} dr $$

Internally, this is calculated by the hankel transformation:

$$ S(k) = \left(\frac{1}{2\pi}\right)^n \frac{(2\pi)^{n/2}}{k^{n/2-1}} \int_0^\infty r^{n/2} C(r) J_{n/2-1}(kr) dr $$

Where $C(r)$ is the covariance function of the model.

**Parameters**

- **k** (`float`) — Radius of the phase: $k = ||k||$

**var_factor**

Factor for $C$ (intensity of variation) to result in variance.

**vario_axis** (`r`, `axis=0`)

Variogram along axis of anisotropy.

**vario_nugget** (`r`)

Isotropic variogram of the model respecting the nugget at $r=0$.

**vario_spatial** (`pos`)

Spatial variogram respecting anisotropy and rotation.

**vario_yadrenko** (`zeta`)

Yadrenko variogram for great-circle distance from latlon-pos.

**variogram** (`r`)

Isotropic variogram of the model.

**property angles**

Rotation angles (in rad) of the model.

Type `numpy.ndarray`

**property anis**

The anisotropy factors of the model.

Type `numpy.ndarray`
**property anis_bounds**

Bounds for the nugget.

---

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list

**property arg**

Names of all arguments.

**Type** list of str

**property arg_bounds**

Bounds for all parameters.

---

**Notes**

Keys are the arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** dict

**property arg_list**

Values of all arguments.

**Type** list of float

**property dim**

The dimension of the model.

**Type** int

**property dist_func**

pdf, cdf and ppf.

Spectral distribution info from the model.

**Type** tuple of callable

**property do_rotation**

State if a rotation is performed.

**Type** bool

**property field_dim**

The field dimension of the model.

**Type** int

**property hankel_kw**

\(\text{hankel.SymmetricFourierTransform}\) kwargs.

**Type** dict

**property has_cdf**

State if a cdf is defined by the user.

**Type** bool

**property has_ppf**

State if a ppf is defined by the user.
Type `bool`

**property integral_scale**
The main integral scale of the model.

**Raises** `ValueError` – If integral scale is not setable.

Type `float`

**property integral_scale_vec**
The integral scales in each direction.

**Notes**

This is calculated by:

- `integral_scale_vec[0] = integral_scale`
- `integral_scale_vec[1] = integral_scale*anis[0]`

Type `numpy.ndarray`

**property is_isotropic**
State if a model is isotropic.

Type `bool`

**property iso_arg**
Names of isotropic arguments.

Type `list of str`

**property iso_arg_list**
Values of isotropic arguments.

Type `list of float`

**property latlon**
Whether the model depends on geographical coords.

Type `bool`

**property len_low_rescaled**
Lower length scale truncation rescaled.

- `len_low_rescaled = len_low / rescale`

Type `float`

**property len_rescaled**
The rescaled main length scale of the model.

Type `float`

**property len_scale**
The main length scale of the model.

Type `float`

**property len_scale_bounds**
Bounds for the length scale.

**Notes**
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list

**property len_scale_vec**
The length scales in each direction.

**Notes**

**This is calculated by:**

- \(\text{len_scale_vec}[0] = \text{len_scale}\)
- \(\text{len_scale_vec}[1] = \text{len_scale} \times \text{anis}[0]\)
- \(\text{len_scale_vec}[2] = \text{len_scale} \times \text{anis}[1]\)

**Type** numpy.ndarray

**property len_up**
Upper length scale truncation of the model.

- \(\text{len_up} = \text{len_low} + \text{len_scale}\)

**Type** float

**property len_up_rescaled**
Upper length scale truncation rescaled.

- \(\text{len_up_rescaled} = (\text{len_low} + \text{len_scale}) / \text{rescale}\)

**Type** float

**property name**
The name of the CovModel class.

**Type** str

**property nugget**
The nugget of the model.

**Type** float

**property nugget_bounds**
Bounds for the nugget.

**Notes**

Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \(<\text{type}>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list

**property opt_arg**
Names of the optional arguments.

**Type** list of str
**property opt_arg_bounds**

Bounds for the optional arguments.

**Notes**

Keys are the opt-arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of “oo”, “cc”, “oc” or “co” to define if the bounds are open (“o”) or closed (“c”).

**Type** dict

**property pykrige_angle**

2D rotation angle for pykrige.

**property pykrige_angle_x**

3D rotation angle around x for pykrige.

**property pykrige_angle_y**

3D rotation angle around y for pykrige.

**property pykrige_angle_z**

3D rotation angle around z for pykrige.

**property pykrige_anis**

2D anisotropy ratio for pykrige.

**property pykrige_anis_y**

3D anisotropy ratio in y direction for pykrige.

**property pykrige_anis_z**

3D anisotropy ratio in z direction for pykrige.

**property pykrige_kwargs**

Keyword arguments for pykrige routines.

**property rescale**

Rescale factor for the length scale of the model.

**Type** float

**property sill**

The sill of the variogram.

**Notes**

This is calculated by:

- sill = variance + nugget

**Type** float

**property var**

The variance of the model.

**Type** float

**property var_bounds**

Bounds for the variance.

**Notes**
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type \texttt{list}

\texttt{property var_raw}

The raw variance of the model without factor.

(See, CovModel.var_factor)

Type \texttt{float}
class gstools.covmodel.TPLSimple

The simply truncated power law model.

This model describes a simple truncated power law with a finite length scale. In contrast to other models, this one is not derived from super-positioning modes.

Notes

This model is given by the following correlation function [Wendland1995]:

\[ \rho(r) = \begin{cases} 
(1 - s \cdot \frac{r}{\ell})^\nu & r < \frac{\ell}{s} \\
0 & r \geq \frac{\ell}{s} 
\end{cases} \]

Where the standard rescale factor is \( s = 1 \). \( \nu \geq \frac{d+1}{2} \) is a shape parameter, which defaults to \( \nu = \frac{d+1}{2} \).

For \( \nu = 1 \) (valid only in \( d=1 \)) this coincides with the truncated linear model:

\[ \rho(r) = \begin{cases} 
1 - s \cdot \left( \frac{r}{\ell} \right) & r < \frac{\ell}{s} \\
0 & r \geq \frac{\ell}{s} 
\end{cases} \]

References

Other Parameters nu (float, optional) – Shape parameter. Standard range: \( \left[ \frac{(d+1)/2}{50} \right] \) Default: \( \text{dim}/2 \)

Parameters

- \texttt{dim} (int, optional) – dimension of the model. Default: 3
- \texttt{var} (float, optional) – variance of the model (the nugget is not included in “this” variance) Default: 1.0
- \texttt{len_scale} (float or list, optional) – length scale of the model. If a single value is given, the same length-scale will be used for every direction. If multiple values (for main and transversal directions) are given, \texttt{anis} will be recalculated accordingly. If only two values are given in 3D, the latter one will be used for both transversal directions. Default: 1.0
- \texttt{nugget} (float, optional) – nugget of the model. Default: 0.0
- \texttt{anis} (float or list, optional) – anisotropy ratios in the transversal directions [\( e_y, e_z \)].
  - \( e_y = l_y/l_x \)
  - \( e_z = l_z/l_x \)
  If only one value is given in 3D, \( e_y \) will be set to 1. This value will be ignored, if multiple \texttt{len_scale}s are given. Default: 1.0
- \texttt{angles} (float or list, optional) – angles of rotation (given in rad):
  - in 2D: given as rotation around z-axis
  - in 3D: given by yaw, pitch, and roll (known as Tait–Bryan angles)
  Default: 0.0
• **integral_scale** (float or list or None, optional) – If given, len_scale will be ignored and recalculated, so that the integral scale of the model matches the given one. Default: None

• **rescale** (float or None, optional) – Optional rescaling factor to divide the length scale with. This could be used for unit conversion or rescaling the length scale to coincide with e.g. the integral scale. Will be set by each model individually. Default: None

• **latlon** (bool, optional) – Whether the model is describing 2D fields on earth’s surface described by latitude and longitude. When using this, the model will internally use the associated ‘Yadrenko’ model to represent a valid model. This means, the spatial distance \( r \) will be replaced by \( 2 \sin(\alpha/2) \), where \( \alpha \) is the great-circle distance, which is equal to the spatial distance of two points in 3D. As a consequence, \( \text{dim} \) will be set to 3 and anisotropy will be disabled. rescale can be set to e.g. earth’s radius, to have a meaningful len_scale parameter. Default: False

• **var_raw** (float or None, optional) – raw variance of the model which will be multiplied with CovModel.var_factor to result in the actual variance. If given, var will be ignored. (This is just for models that override CovModel.var_factor) Default: None

• **hankel_kw** (dict or None, optional) – Modify the init-arguments of hankel. SymmetricFourierTransform used for the spectrum calculation. Use with caution (Better: Don’t!). None is equivalent to {"a": -1, "b": 1, "N": 1000, "h": 0.001}. Default: None

**Attributes**

angles numpy.ndarray: Rotation angles (in rad) of the model.

anis numpy.ndarray: The anisotropy factors of the model.

anis_bounds list: Bounds for the nugget.

arg list of str: Names of all arguments.

arg_bounds dict: Bounds for all parameters.

arg_list list of float: Values of all arguments.

dim int: The dimension of the model.

dist_func tuple of callable: pdf, cdf and ppf.

do_rotation bool: State if a rotation is performed.

field_dim int: The field dimension of the model.

hankel_kw dict: hankel.SymmetricFourierTransform kwargs.

has_cdf bool: State if a cdf is defined by the user.

has_ppf bool: State if a ppf is defined by the user.

integral_scale float: The main integral scale of the model.

integral_scale_vec numpy.ndarray: The integral scales in each direction.

is_isotropic bool: State if a model is isotropic.

iso_arg list of str: Names of isotropic arguments.

iso_arg_list list of float: Values of isotropic arguments.

latlon bool: Whether the model depends on geographical coords.

len_rescaled float: The rescaled main length scale of the model.
len_scale float: The main length scale of the model.
len_scale_bounds list: Bounds for the length scale.
len_scale_vec numpy.ndarray: The length scales in each direction.
name str: The name of the CovModel class.
nugget float: The nugget of the model.
nugget_bounds list: Bounds for the nugget.
opt_arg list of str: Names of the optional arguments.
opt_arg_bounds dict: Bounds for the optional arguments.
pykrige_angle 2D rotation angle for pykrige.
pykrige_angle_x 3D rotation angle around x for pykrige.
pykrige_angle_y 3D rotation angle around y for pykrige.
pykrige_angle_z 3D rotation angle around z for pykrige.
pykrige_anis 2D anisotropy ratio for pykrige.
pykrige_anis_y 3D anisotropy ratio in y direction for pykrige.
pykrige_anis_z 3D anisotropy ratio in z direction for pykrige.
pykrige_kwargs Keyword arguments for pykrige routines.
rescale float: Rescale factor for the length scale of the model.
sill float: The sill of the variogram.
var float: The variance of the model.
var_bounds list: Bounds for the variance.
var_raw float: The raw variance of the model without factor.

Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>anisometrize(pos)</td>
<td>Bring a position tuple into the anisotropic coordinate-system.</td>
</tr>
<tr>
<td>calc_integral_scale()</td>
<td>Calculate the integral scale of the isotrope model.</td>
</tr>
<tr>
<td>check_arg_bounds()</td>
<td>Check arguments to be within their given bounds.</td>
</tr>
<tr>
<td>check_dim(dim)</td>
<td>Check the given dimension.</td>
</tr>
<tr>
<td>check_opt_arg()</td>
<td>Run checks for the optional arguments.</td>
</tr>
<tr>
<td>cor(h)</td>
<td>TPL Simple - normalized correlation function.</td>
</tr>
<tr>
<td>cor_axis(r[, axis])</td>
<td>Correlation along axis of anisotropy.</td>
</tr>
<tr>
<td>cor_spatial(pos)</td>
<td>Spatial correlation respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cor_yadrenko(zeta)</td>
<td>Yadrenko correlation for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>correlation(r)</td>
<td>Correlation function of the model.</td>
</tr>
<tr>
<td>cov_axis(r[, axis])</td>
<td>Covariance along axis of anisotropy.</td>
</tr>
<tr>
<td>cov_nugget(r)</td>
<td>Isotropic covariance of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td>cov_spatial(pos)</td>
<td>Spatial covariance respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>cov_yadrenko(zeta)</td>
<td>Yadrenko covariance for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>covariance(r)</td>
<td>Covariance of the model.</td>
</tr>
</tbody>
</table>

continues on next page
Table 31 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>default_arg_bounds()</td>
<td>Provide default boundaries for arguments.</td>
</tr>
<tr>
<td>default_opt_arg()</td>
<td>Defaults for the optional arguments.</td>
</tr>
<tr>
<td>default_opt_arg_bounds()</td>
<td>Defaults for boundaries of the optional arguments.</td>
</tr>
<tr>
<td>default_rescale()</td>
<td>Provide default rescaling factor.</td>
</tr>
<tr>
<td>fit_variogram(x_data, y_data[, anis, sill, ...])</td>
<td>Fitting the variogram-model to an empirical variogram.</td>
</tr>
<tr>
<td>fix_dim()</td>
<td>Set a fix dimension for the model.</td>
</tr>
<tr>
<td>isometrize(pos)</td>
<td>Make a position tuple ready for isotropic operations.</td>
</tr>
<tr>
<td>ln_spectral_rad_pdf(r)</td>
<td>Log radial spectral density of the model.</td>
</tr>
<tr>
<td>main_axes()</td>
<td>Axes of the rotated coordinate-system.</td>
</tr>
<tr>
<td>percentile_scale([per])</td>
<td>Calculate the percentile scale of the isotrope model.</td>
</tr>
<tr>
<td>plot([func])</td>
<td>Plot a function of a the CovModel.</td>
</tr>
<tr>
<td>pykrige_vario([args, r])</td>
<td>Isotropic variogram of the model for pykrige.</td>
</tr>
<tr>
<td>set_arg_bounds([check_args])</td>
<td>Set bounds for the parameters of the model.</td>
</tr>
<tr>
<td>spectral_density(k)</td>
<td>Spectral density of the covariance model.</td>
</tr>
<tr>
<td>spectral_rad_pdf(r)</td>
<td>Radial spectral density of the model.</td>
</tr>
<tr>
<td>spectrum(k)</td>
<td>Spectrum of the covariance model.</td>
</tr>
<tr>
<td>var_factor()</td>
<td>Factor for the variance.</td>
</tr>
<tr>
<td>vario_axis(r[, axis])</td>
<td>Variogram along axis of anisotropy.</td>
</tr>
<tr>
<td>vario_nugget(r)</td>
<td>Isotropic variogram of the model respecting the nugget at r=0.</td>
</tr>
<tr>
<td>vario_spatial(pos)</td>
<td>Spatial variogram respecting anisotropy and rotation.</td>
</tr>
<tr>
<td>vario_yadrenko(zeta)</td>
<td>Yadrenko variogram for great-circle distance from latlon-pos.</td>
</tr>
<tr>
<td>variogram(r)</td>
<td>Isotropic variogram of the model.</td>
</tr>
</tbody>
</table>

**anisometrize(pos)**
- Bring a position tuple into the anisotropic coordinate-system.

**calc_integral_scale()**
- Calculate the integral scale of the isotrope model.

**check_arg_bounds()**
- Check arguments to be within their given bounds.

**check_dim(dim)**
- Check the given dimension.

**check_opt_arg()**
- Run checks for the optional arguments.
- This is in addition to the bound-checks

**Notes**
- You can use this to raise a ValueError/warning
- Any return value will be ignored
- This method will only be run once, when the class is initialized

**cor(h)**
- TPL Simple - normalized correlation function.

**cor_axis(r, axis=0)**
- Correlation along axis of anisotropy.
**cor_spatial** (*pos*)
Spatial correlation respecting anisotropy and rotation.

**cor_yadrenko** (*zeta*)
Yadrenko correlation for great-circle distance from latlon-pos.

**correlation** (*r*)
Correlation function of the model.

**cov_axis** (*r, axis=0*)
Covariance along axis of anisotropy.

**cov_nugget** (*r*)
Isotropic covariance of the model respecting the nugget at r=0.

**cov_spatial** (*pos*)
Spatial covariance respecting anisotropy and rotation.

**cov_yadrenko** (*zeta*)
Yadrenko covariance for great-circle distance from latlon-pos.

**covariance** (*r*)
Covariance of the model.

**default_arg_bounds**
Provide default boundaries for arguments.
Given as a dictionary.

**default_opt_arg**
Defaults for the optional arguments.

- `{"nu": dim/2}`

  **Returns** Defaults for optional arguments
  **Return type** dict

**default_opt_arg_bounds**
Defaults for boundaries of the optional arguments.

- `{"nu": [dim/2 - 1, 50.0]}`

  **Returns** Boundaries for optional arguments
  **Return type** dict

**default_rescale**
Provide default rescaling factor.

**fit_variogram** (*x_data, y_data, anis=True, sill=None, init_guess='default', weights=None, method='trf', loss='soft_l1', max_eval=None, return_r2=False, curve_fit_kwargs=None, **para_select*)
Fitting the variogram-model to an empirical variogram.

**Parameters**

- **x_data** (*numpy.ndarray*) – The bin-centers of the empirical variogram.
- **y_data** (*numpy.ndarray*) – The measured variogram If multiple are given, they are interpreted as the directional variograms along the main axis of the associated rotated coordinate system. Anisotropy ratios will be estimated in that case.
- **anis** (*bool*, optional) – In case of a directional variogram, you can control anisotropy by this argument. Deselect the parameter from fitting, by setting it “False”. You could also pass a fixed value to be set in the model. Then the anisotropy ratios won’t be altered during fitting. Default: True
• **sill** *(float or bool, optional)* – Here you can provide a fixed sill for the variogram. It needs to be in a fitting range for the var and nugget bounds. If variance or nugget are not selected for estimation, the nugget will be recalculated to fulfill:

- \( \text{sill} = \text{var} + \text{nugget} \)
- if the variance is bigger than the sill, nugget will be set to its lower bound and the variance will be set to the fitting partial sill.

If variance is deselected, it needs to be less than the sill, otherwise a ValueError comes up. Same for nugget. If sill=False, it will be deselected from estimation and set to the current sill of the model. Then, the procedure above is applied. Default: None

• **init_guess**(str or dict, optional) – Initial guess for the estimation. Either:

- ”default”: using the default values of the covariance model (“len_scale” will be mean of given bin centers; “var” and “nugget” will be mean of given variogram values (if in given bounds))
- ”current”: using the current values of the covariance model
- dict: dictionary with parameter names and given value (separate “default” can be set to “default” or “current” for unspecified values to get same behavior as given above (“default” by default)) Example: {"len_scale": 10, "default": "current"}

Default: “default”

• **weights** *(str, numpy.ndarray, callable, optional)* – Weights applied to each point in the estimation. Either:

- ’inv’: inverse distance \( 1 / (x_{\text{data}} + 1) \)
- list: weights given per bin
- callable: function applied to \( x_{\text{data}} \)

If callable, it must take a 1-d ndarray. Then \( \text{weights} = f(x_{\text{data}}) \). Default: None

• **method** *({'trf', 'dogbox'}, optional)* – Algorithm to perform minimization.

- ’trf’: Trust Region Reflective algorithm, particularly suitable for large sparse problems with bounds. Generally robust method.
- ’dogbox’: dogleg algorithm with rectangular trust regions, typical use case is small problems with bounds. Not recommended for problems with rank-deficient Jacobian.

Default: ‘trf’

• **loss** *(str or callable, optional)* – Determines the loss function in scipy’s curve_fit. The following keyword values are allowed:

- ’linear’ (default): \( \rho(z) = z \). Gives a standard least-squares problem.
- ’soft_l1’: \( \rho(z) = 2 * ((1 + z)^{0.5} - 1) \). The smooth approximation of L1 (absolute value) loss. Usually a good choice for robust least squares.
- ’huber’: \( \rho(z) = z \text{ if } z < 1 \text{ else } 2z^{0.5} - 1 \). Works similarly to ’soft_l1’.
- ”caucy”: \( \rho(z) = \ln(1 + z) \). Severely weakens outliers influence, but may cause difficulties in optimization process.
- ”arctan”: \( \rho(z) = \arctan(z) \). Limits a maximum loss on a single residual, has properties similar to ”cauchy”.
If callable, it must take a 1-d ndarray \( z = f \) and return an array_like with shape (3, m) where row 0 contains function values, row 1 contains first derivatives and row 2 contains second derivatives. Default: ‘soft_l1’

- **max_eval** (int or None, optional) – Maximum number of function evaluations before the termination. If None (default), the value is chosen automatically: 100 * n.

- **return_r2** (bool, optional) – Whether to return the r2 score of the estimation. Default: False

- **curve_fit_kwargs** (dict, optional) – Other keyword arguments passed to scipy’s curve_fit. Default: None

- ****para_select** – You can deselect parameters from fitting, by setting them “False” using their names as keywords. You could also pass fixed values for each parameter. Then these values will be applied and the involved parameters wont be fitted. By default, all parameters are fitted.

Returns

- **fit_para** (dict) – Dictionary with the fitted parameter values

- **pcov** (numpy.ndarray) – The estimated covariance of \( popt \) from scipy.optimize.curve_fit. To compute one standard deviation errors on the parameters use \( perr = np.sqrt(np.diag(pcov)) \).

- **r2_score** (float, optional) – r2 score of the curve fitting results. Only if return_r2 is True.

Notes

You can set the bounds for each parameter by accessing \( \text{CovModel.set_arg_bounds} \).

The fitted parameters will be instantly set in the model.

**fix_dim()**

Set a fix dimension for the model.

**isometrize** (pos)

Make a position tuple ready for isotropic operations.

**ln_spectral_rad_pdf** (r)

Log radial spectral density of the model.

**main_axes**()

Axes of the rotated coordinate-system.

**percentile_scale** (per=0.9)

Calculate the percentile scale of the isotrope model.

This is the distance, where the given percentile of the variance is reached by the variogram

**plot** (func=’variogram’, **kwargs)

Plot a function of a the CovModel.

Parameters

- **func** (str, optional) – Function to be plotted. Could be one of:
  - ”variogram”
  - ”covariance”
  - ”correlation”
  - ”vario_spatial”
  - ”cov_spatial”
– "cor_spatial"
– "vario_yadrenko"
– "cov_yadrenko"
– "vario_axis"
– "cov_axis"
– "cor_axis"
– "spectrum"
– "spectral_density"
– "spectral_rad_pdf"

• **kwargs – Keyword arguments forwarded to the plotting function “plot_” + func in gstools.covmodel.plot.

See also:
gstools.covmodel.plot

pykrige_vario (args=None, r=0)
Isotropic variogram of the model for pykrige.

set_arg_bounds (check_args=True, *kwargs)
Set bounds for the parameters of the model.

Parameters

• check_args (bool, optional) – Whether to check if the arguments are in their valid bounds. In case not, a proper default value will be determined. Default: True

• **kwargs – Parameter name as keyword ("var", "len_scale", "nugget", <opt_arg>) and a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

spectral_density (k)
Spectral density of the covariance model.
This is given by:

\[ \hat{S}(k) = \frac{S(k)}{\sigma^2} \]

Where \(S(k)\) is the spectrum of the covariance model.

Parameters k (float) – Radius of the phase: \(k = ||k||\)

spectral_rad_pdf (r)
Radial spectral density of the model.

spectrum (k)
Spectrum of the covariance model.
This is given by:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \int C(r)e^{ikr}r^n dr \]

Internally, this is calculated by the hankel transformation:

\[ S(k) = \left( \frac{1}{2\pi} \right)^n \cdot \frac{(2\pi)^{n/2}}{k^{n/2-1}} \int_0^\infty r^{n/2}C(r)J_{n/2-1}(kr)dr \]

Where \(C(r)\) is the covariance function of the model.
Parameters $k$ (float) – Radius of the phase: $k = \|k\|

var_factor()
   Factor for the variance.

vario_axis($r$, axis=0)
   Variogram along axis of anisotropy.

vario Nugget($r$)
   Isotropic variogram of the model respecting the nugget at r=0.

vario Spatial ($pos$)
   Spatial variogram respecting anisotropy and rotation.

vario Yadrenko($zeta$)
   Yadrenko variogram for great-circle distance from latlon-pos.

varioGram ($r$)
   Isotropic variogram of the model.

property angles
   Rotation angles (in rad) of the model.
   Type numpy.ndarray

property anis
   The anisotropy factors of the model.
   Type numpy.ndarray

property anis_bounds
   Bounds for the nugget.
   Type list

Notes
   Is a list of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

property arg
   Names of all arguments.
   Type list of str

property arg_bounds
   Bounds for all parameters.
   Type dict

Notes
   Keys are the arg names and values are lists of 2 or 3 values: [a, b] or [a, b, <type>] where <type> is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

property arg_list
   Values of all arguments.
   Type list of float

property dim
   The dimension of the model.
   Type int
**property dist_func**

pdf, cdf and ppf.

Spectral distribution info from the model.

Type `tuple of callable`

**property do_rotation**

State if a rotation is performed.

Type `bool`

**property field_dim**

The field dimension of the model.

Type `int`

**property hankel_kw**

`hankel.SymmetricFourierTransform` kwargs.

Type `dict`

**property has_cdf**

State if a cdf is defined by the user.

Type `bool`

**property has_ppf**

State if a ppf is defined by the user.

Type `bool`

**property integral_scale**

The main integral scale of the model.

Raises `ValueError` – If integral scale is not setable.

Type `float`

**property integral_scale_vec**

The integral scales in each direction.

Notes

This is calculated by:

- `integral_scale_vec[0] = integral_scale`
- `integral_scale_vec[1] = integral_scale*anis[0]`

Type `numpy.ndarray`

**property is_isotropic**

State if a model is isotropic.

Type `bool`

**property iso_arg**

Names of isotropic arguments.

Type `list of str`

**property iso_arg_list**

Values of isotropic arguments.

Type `list of float`
**property latlon**
Whether the model depends on geographical coords.

Type `bool`

**property len_rescaled**
The rescaled main length scale of the model.

Type `float`

**property len_scale**
The main length scale of the model.

Type `float`

**property len_scale_bounds**
Bounds for the length scale.

Notes
Is a list of 2 or 3 values: `[a, b]` or `[a, b, <type>]` where `<type>` is one of "oc", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type `list`

**property len_scale_vec**
The length scales in each direction.

Notes
This is calculated by:

- `len_scale_vec[0] = len_scale`
- `len_scale_vec[1] = len_scale*anis[0]`

Type `numpy.ndarray`

**property name**
The name of the CovModel class.

Type `str`

**property nugget**
The nugget of the model.

Type `float`

**property nugget_bounds**
Bounds for the nugget.

Notes
Is a list of 2 or 3 values: `[a, b]` or `[a, b, <type>]` where `<type>` is one of "oc", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

Type `list`

**property opt_arg**
Names of the optional arguments.
**Type** list of str

**property opt_arg_bounds**

Bounds for the optional arguments.

---

**Notes**

Keys are the opt-arg names and values are lists of 2 or 3 values: \([a, b]\) or \([a, b, <type>]\) where \(<type>\) is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

---

**Type** dict

**property pykrige_angle**

2D rotation angle for pykrige.

**property pykrige_angle_x**

3D rotation angle around x for pykrige.

**property pykrige_angle_y**

3D rotation angle around y for pykrige.

**property pykrige_angle_z**

3D rotation angle around z for pykrige.

**property pykrige_anis**

2D anisotropy ratio for pykrige.

**property pykrige_anis_y**

3D anisotropy ratio in y direction for pykrige.

**property pykrige_anis_z**

3D anisotropy ratio in z direction for pykrige.

**property pykrige_kwargs**

Keyword arguments for pykrige routines.

**property rescale**

Rescale factor for the length scale of the model.

**Type** float

**property sill**

The sill of the variogram.

---

**Notes**

This is calculated by:

\[
\text{sill} = \text{variance} + \text{nugget}
\]

---

**Type** float

**property var**

The variance of the model.

**Type** float

**property var_bounds**

Bounds for the variance.

---

**Notes**
Is a list of 2 or 3 values: \([a, b]\) or \([a, b, \text{<type>}]\) where \text{<type>} is one of "oo", "cc", "oc" or "co" to define if the bounds are open ("o") or closed ("c").

**Type** list

**property var_raw**

The raw variance of the model without factor.

(See. CovModel.var_factor)

**Type** float
GStools subpackage providing plotting routines for the covariance models.

The following classes and functions are provided:

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>plot_variogram</code></td>
<td>Plot variogram of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_covariance</code></td>
<td>Plot covariance of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_correlation</code></td>
<td>Plot correlation function of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_vario_yadrenko</code></td>
<td>Plot Yadrenko variogram of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_cov_yadrenko</code></td>
<td>Plot Yadrenko covariance of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_cor_yadrenko</code></td>
<td>Plot Yadrenko correlation function of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_vario_axis</code></td>
<td>Plot variogram of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_cov_axis</code></td>
<td>Plot variogram of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_cor_axis</code></td>
<td>Plot variogram of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_vario_spatial</code></td>
<td>Plot spatial variogram of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_cov_spatial</code></td>
<td>Plot spatial covariance of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_cor_spatial</code></td>
<td>Plot spatial correlation of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_spectrum</code></td>
<td>Plot spectrum of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_spectral_density</code></td>
<td>Plot spectral density of a given CovModel.</td>
</tr>
<tr>
<td><code>plot_spectral_rad_pdf</code></td>
<td>Plot radial spectral pdf of a given CovModel.</td>
</tr>
</tbody>
</table>

```python
gstools.covmodel.plot.plot_cor_axis(model, axis=0, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)
gstools.covmodel.plot.plot_cor_spatial(model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)
gstools.covmodel.plot.plot_cor_yadrenko(model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)
gstools.covmodel.plot.plot_correlation(model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)
gstools.covmodel.plot.plot_cov_axis(model, axis=0, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)
gstools.covmodel.plot.plot_cov_spatial(model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)
gstools.covmodel.plot.plot_cov_yadrenko(model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)
```
gstools.covmodel.plot.plot_covariance(model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)

Plot covariance of a given CovModel.

gstools.covmodel.plot.plot_spectral_density(model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)

Plot spectral density of a given CovModel.

gstools.covmodel.plot.plot_spectral_rad_pdf(model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)

Plot radial spectral pdf of a given CovModel.

gstools.covmodel.plot.plot_spectrum(model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)

Plot spectrum of a given CovModel.

gstools.covmodel.plot.plot_vario_axis(model, axis=0, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)

Plot variogram of a given CovModel.

gstools.covmodel.plot.plot_vario_spatial(model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)

Plot spatial variogram of a given CovModel.

gstools.covmodel.plot.plot_vario_yadrenko(model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)

Plot Yadrenko variogram of a given CovModel.

gstools.covmodel.plot.plot_variogram(model, x_min=0.0, x_max=None, fig=None, ax=None, **kwargs)

Plot variogram of a given CovModel.
3.7 gstools.field

GStools subpackage providing tools for spatial random fields.

Subpackages

<table>
<thead>
<tr>
<th>Subpackage</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>generator</td>
<td>GStools subpackage providing generators for spatial random fields.</td>
</tr>
<tr>
<td>upscaling</td>
<td>GStools subpackage providing upscaling routines for the spatial random field.</td>
</tr>
</tbody>
</table>

Spatial Random Field

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SRF</td>
<td>A class to generate spatial random fields (SRF).</td>
</tr>
<tr>
<td>CondSRF</td>
<td>A class to generate conditioned spatial random fields (SRF).</td>
</tr>
</tbody>
</table>

class gstools.field.SRF (model[, mean=0.0, normalizer=None, trend=None, upscaling='no_scaling', generator='RandMeth', **generator_kwargs)

Bases: gstools.field.base.Field

A class to generate spatial random fields (SRF).

Parameters

- **model** (*CovModel*) – Covariance Model of the spatial random field.
- **mean** (float or callable, optional) – Mean of the SRF (in normal form). Could also be a callable. The default is 0.0.
- **normalizer** (None or Normalizer, optional) – Normalizer to be applied to the SRF to transform the field values. The default is None.
- **trend** (None or float or callable, optional) – Trend of the SRF (in transformed form). If no normalizer is applied, this behaves equal to ‘mean’. The default is None.
- **upscaling** (str, optional) – Method to be used for upscaling the variance at each point depending on the related element volume. See the point_volumes keyword in the `SRF.__call__` routine. At the moment, the following upscaling methods are provided:
  - ”no_scaling” : No upscaling is applied to the variance. See: `var_no_scaling`
  - ”coarse_graining” : A volume depended variance is calculated by the upscaling technique coarse graining. See: `var_coarse_graining`
  Default: “no_scaling”
- **generator** (str, optional) – Name of the field generator to be used. At the moment, the following generators are provided:
  - ”RandMeth” : The Randomization Method. See: `RandMeth`
  - ”IncomprRandMeth” : The incompressible Randomization Method. This is the original algorithm proposed by Kraichnan 1970 See: `IncomprRandMeth`
  - ”VectorField” : an alias for “IncomprRandMeth”
• "VelocityField" : an alias for "IncomprRandMeth"
  Default: "RandMeth"

• **generator_kwargs** – Keyword arguments that are forwarded to the generator in use. Have a look at the provided generators for further information.

Attributes

  **all_fields** list: All fields as stacked list.

  **dim** int: Dimension of the field.

  **field_names** list: Names of present fields.

  **field_shape** tuple: The shape of the field.

  **generator** callable: The generator of the field.

  **latlon** bool: Whether the field depends on geographical coords.

  **mean** float or callable: The mean of the field.

  **mesh_type** str: The mesh type of the field.

  **model** CovModel: The covariance model of the field.

  **name** str: The name of the class.

  **normalizer** Normalizer: Normalizer of the field.

  **pos** tuple: The position tuple of the field.

  **trend** float or callable: The trend of the field.

  **upscaling** str: Name of the upscaling method.

  **value_type** str: Type of the field values (scalar, vector).

Methods

  **__call__**([pos, seed, point_volumes, ...]) Generate the spatial random field.

  **delete_fields**([select]) Delete selected fields.

  **get_store_config**(store[, default, fld_cnt]) Get storage configuration from given selection.

  **mesh**(mesh[, points, direction, name]) Generate a field on a given meshio, ogs5py or PyVista mesh.

  **plot**([Field, fig, ax]) Plot the spatial random field.

  **post_field**(field[, name, process, save]) Postprocessing field values.

  **pre_pos**([pos, mesh_type, info]) Preprocessing positions and mesh_type.

  **set_generator**(generator, **generator_kwargs) Set the generator for the field.

  **set_pos**(pos[, mesh_type, info]) Set positions and mesh_type.

  **structured**(*args, **kwargs) Generate a field on a structured mesh.

  **to_pyvista**([field_select, fieldname]) Create a VTK/PyVista grid of the stored field.

  **transform**(method[, field, store, process]) Apply field transformation.

  **unstructured**(*args, **kwargs) Generate a field on an unstructured mesh.

  **upscaling_func**(*args, **kwargs) Upscaling method applied to the field variance.

  **vtk_export**(filename[, field_select, fieldname]) Export the stored field to vtk.

  **__call__**(pos=None, seed=nan, point_volumes=0.0, mesh_type='unstructured', post_process=True, store=True) Generate the spatial random field.

  The field is saved as self.field and is also returned.
Parameters

- **pos** *(list, optional)* – the position tuple, containing main direction and transversal directions
- **seed** *(int, optional)* – seed for RNG for resetting. Default: keep seed from generator
- **point_volumes** *(float or numpy.ndarray)* – If your evaluation points for the field are coming from a mesh, they are probably representing a certain element volume. This volume can be passed by `point_volumes` to apply the given variance upscaling. If `point_volumes` is 0 nothing is changed. Default: 0
- **mesh_type** *(str)* – ‘structured’ / ‘unstructured’
- **post_process** *(bool, optional)* – Whether to apply mean, normalizer and trend to the field. Default: `True`
- **store** *(str or bool, optional)* – Whether to store field (True/False) with default name or with specified name. The default is `True` for default name “field”.

Returns **field** – the SRF

Return type **numpy.ndarray**

delete_fields *(select=None)*
Delete selected fields.

get_store_config *(store, default=None, fld_cnt=None)*
Get storage configuration from given selection.

Parameters

- **store** *(str or bool or list, optional)* – Whether to store fields (True/False) with default names or with specified names. The default is `True` for default names.
- **default** *(str or list, optional)* – Default field names. The default is “field”.
- **fld_cnt** *(None or int, optional)* – Number of fields when using lists. The default is None.

Returns

- **name** *(str or list)* – Name(s) of field.
- **save** *(bool or list)* – Whether to save field(s).

mesh *(mesh, points='centroids', direction='all', name='field', **kwargs)*
Generate a field on a given meshio, ogs5py or PyVista mesh.

Parameters

- **mesh** *(meshio.Mesh or ogs5py.MSH or PyVista mesh)* – The given mesh
- **points** *(str, optional)* – The points to evaluate the field at. Either the “centroids” of the mesh cells (calculated as mean of the cell vertices) or the “points” of the given mesh. Default: “centroids”
- **direction** *(str or list, optional)* – Here you can state which direction should be choosen for lower dimension. For example, if you got a 2D mesh in xz direction, you have to pass “xz”. By default, all directions are used. One can also pass a list of indices. Default: “all”
- **name** *(str or list of str, optional)* – Name(s) to store the field(s) in the given mesh as point_data or cell_data. If to few names are given, digits will be appended. Default: “field”
- ****kwargs** – Keyword arguments forwarded to __call__.
**Notes**

This will store the field in the given mesh under the given name, if a meshio or PyVista mesh was given.

**See:**
- meshio: https://github.com/nschloe/meshio
- ogs5py: https://github.com/GeoStat-Framework/ogs5py
- PyVista: https://github.com/pyvista/pyvista

```
plot(field='field', fig=None, ax=None, **kwargs)
```
Plot the spatial random field.

**Parameters**
- `field` *(str, optional)* – Field that should be plotted. Default: “field”
- `fig` *(Figure or None)* – Figure to plot the axes on. If None, a new one will be created. Default: None
- `ax` *(Axes or None)* – Axes to plot on. If None, a new one will be added to the figure. Default: None
- `**kwargs` – Forwarded to the plotting routine.

```
post_field(field, name='field', process=True, save=True)
```
Postprocessing field values.

**Parameters**
- `field` *(numpy.ndarray)* – Field values.
- `name` *(str, optional)* – Name to store the field. The default is “field”.
- `process` *(bool, optional)* – Whether to process field to apply mean, normalizer and trend. The default is True.
- `save` *(bool, optional)* – Whether to store the field under the given name. The default is True.

**Returns**
- `field` – Processed field values.

**Return type**
- `numpy.ndarray`

```
pre_pos(pos=None, mesh_type='unstructured', info=False)
```
Preprocessing positions and mesh_type.

**Parameters**
- `pos` *(iterable)* – the position tuple, containing main direction and transversal directions
- `mesh_type` *(str, optional)* – ‘structured’ / ‘unstructured’ Default: “unstructured”
- `info` *(bool, optional)* – Whether to return information

**Returns**
- `iso_pos` *(tuple)* – Isometrized position tuple.
- `shape` *(tuple)* – Shape of the resulting field.
- `info` *(dict, optional)* – Information about settings.

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.
**set_generator** *(generator, **generator_kwargs)*

Set the generator for the field.

**Parameters**

- *generator* *(str, optional)* – Name of the generator to use for field generation. Default: “RandMeth”
- **generator_kwargs** – keyword arguments that are forwarded to the generator in use.

**set_pos** *(pos, mesh_type='unstructured', info=False)*

Set positions and mesh_type.

**Parameters**

- *pos* *(iterable)* – the position tuple, containing main direction and transversal directions
- *info* *(bool, optional)* – Whether to return information

**Returns** info – Information about settings.

**Return type** dict, optional

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

**structured** *(**args, **kwargs)*

Generate a field on a structured mesh.

See **call**

**to_pyvista** *(field_select='field', fieldname='field')*

Create a VTK/PyVista grid of the stored field.

**Parameters**

- *field_select* *(str, optional)* – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”
- *fieldname* *(str, optional)* – Name of the field in the VTK file. Default: “field”

**transform** *(method, field='field', store=True, process=False, **kwargs)*

Apply field transformation.

**Parameters**

- *method* *(str)* – Method to use. See gstools.transform for available transformations.
- *field* *(str, optional)* – Name of field to be transformed. The default is “field”.
- *store* *(str or bool, optional)* – Whether to store field inplace (True/False) or under a given name. The default is True.
- *process* *(bool, optional)* – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- **kwargs** – Keyword arguments forwarded to selected method.

**Raises** ValueError – When method is unknown.

**Returns** Transformed field.

**Return type** numpy.ndarray
unstructured(*args, **kwargs)
Generate a field on an unstructured mesh.

See __call__

upscaling_func(*args, **kwargs)
Upscaling method applied to the field variance.

vtk_export(filename, field_select='field', fieldname='field')
Export the stored field to vtk.

Parameters
- filename(str) – Filename of the file to be saved, including the path. Note that an ending (.vtr or .vtu) will be added to the name.
- field_select(str, optional) – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”
- fieldname(str, optional) – Name of the field in the VTK file. Default: “field”

property all_fields
All fields as stacked list.
Type list

default_field_names = ['field']
Default field names.
Type list

property dim
Dimension of the field.
Type int

property field_names
Names of present fields.
Type list

property field_shape
The shape of the field.
Type tuple

property generator
The generator of the field.
Default: RandMeth
Type callable

property latlon
Whether the field depends on geographical coords.
Type bool

property mean
The mean of the field.
Type float or callable

property mesh_type
The mesh type of the field.
Type str

property model
The covariance model of the field.
Type CovModel
**property name**
The name of the class.

*Type str*

**property normalizer**
Normalizer of the field.

*Type Normalizer*

**property pos**
The position tuple of the field.

*Type tuple*

**property trend**
The trend of the field.

*Type float or callable*

**property upscaling**
Name of the upscaling method.

See the `point_volumes` keyword in the `SRF.__call__` routine. Default: “no_scaling”

*Type str*

**property value_type**
Type of the field values (scalar, vector).

*Type str*
A class to generate conditioned spatial random fields (SRF).

Parameters

- **krige** (*Krige*) – Kriging setup to condition the spatial random field.
- **generator** *(str, optional)* – Name of the field generator to be used. At the moment, only the following generator is provided:
  - "RandMeth" : The Randomization Method. See: *RandMeth*  
  Default: "RandMeth"
- **generator_kwargs** – Keyword arguments that are forwarded to the generator in use. Have a look at the provided generators for further information.

Attributes

- **all_fields** : All fields as stacked list.
- **dim** : Dimension of the field.
- **field_names** : Names of present fields.
- **field_shape** : The shape of the field.
- **generator** : The generator of the field.
- **krige** : The underlying kriging class.
- **latlon** : Whether the field depends on geographical coords.
- **mean** : The mean of the field.
- **mesh_type** : The mesh type of the field.
- **model** : The covariance model of the field.
- **name** : The name of the class.
- **normalizer** : Normalizer of the field.
- **pos** : The position tuple of the field.
- **trend** : The trend of the field.
- **value_type** : Type of the field values (scalar, vector).

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>__call__([pos, seed, mesh_type, ...])</code></td>
<td>Generate the conditioned spatial random field.</td>
</tr>
<tr>
<td><code>delete_fields([select])</code></td>
<td>Delete selected fields.</td>
</tr>
<tr>
<td><code>get_scaling(krige_var, shape)</code></td>
<td>Get scaling coefficients for the random field.</td>
</tr>
<tr>
<td><code>get_store_config([store[, default, fld_cnt]])</code></td>
<td>Get storage configuration from given selection.</td>
</tr>
<tr>
<td><code>mesh([mesh[, points, direction, name]])</code></td>
<td>Generate a field on a given meshio, ogs5py or PyVista mesh.</td>
</tr>
<tr>
<td><code>plot([field[, fig, ax]])</code></td>
<td>Plot the spatial random field.</td>
</tr>
<tr>
<td><code>post_field([field[, name, process, save]])</code></td>
<td>Postprocessing field values.</td>
</tr>
<tr>
<td><code>pre_pos([pos[, mesh_type, info]])</code></td>
<td>Preprocessing positions and mesh_type.</td>
</tr>
<tr>
<td><code>set_generator(generator,**generator_kwargs)</code></td>
<td>Set the generator for the field.</td>
</tr>
<tr>
<td><code>set_pos([pos[, mesh_type, info]])</code></td>
<td>Set positions and mesh_type.</td>
</tr>
</tbody>
</table>

continues on next page
__call__ (pos=None, seed=nan, mesh_type='unstructured', post_process=True, store=True, krige_store=True, **kwargs)

Generate the conditioned spatial random field.

The field is saved as self.field and is also returned.

Parameters

- **pos** (list, optional) – the position tuple, containing main direction and transversal directions
- **seed** (int, optional) – seed for RNG for resetting. Default: keep seed from generator
- **mesh_type** (str) – ‘structured’ / ‘unstructured’
- **post_process** (bool, optional) – Whether to apply mean, normalizer and trend to the field. Default: True
- **store** (str or bool or list, optional) – Whether to store fields (True/False) with default names or with specified names. The default is True for default names [“field”, “raw_field”, “raw_krige”].
- **krige_store** (str or bool or list, optional) – Whether to store kriging fields (True/False) with default name or with specified names. The default is True for default names [“field”, “krige_var”].
- ****kwargs – keyword arguments that are forwarded to the kriging routine in use.

Returns

field – the conditioned SRF

Return type

numpy.ndarray
delete_fields (select=None)

Delete selected fields.

get_scaling (krige_var, shape)

Get scaling coefficients for the random field.

Parameters

- **krige_var** (numpy.ndarray) – Kriging variance.
- **shape** (tuple of int) – Field shape.

Returns

- **var_scale** (numpy.ndarray) – Variance scaling factor for the random field.
- **nugget** (numpy.ndarray or int) – Nugget to be added to the field.

get_store_config (store, default=None, fld_cnt=None)

Get storage configuration from given selection.

Parameters

- **store** (str or bool or list, optional) – Whether to store fields (True/False) with default names or with specified names. The default is True for default names.
- **default** (str or list, optional) – Default field names. The default is “field”.
- **fld_cnt** (None or int, optional) – Number of fields when using lists. The default is None.
GeoStatTools Documentation, Release 1.3.4

Returns

- **name** *(str or list)* – Name(s) of field.
- **save** *(bool or list)* – Whether to save field(s).

**mesh** *(mesh, points='centroids', direction='all', name='field', **kwargs)*

Generate a field on a given meshio, ogs5py or PyVista mesh.

Parameters

- **mesh** *(meshio.Mesh or ogs5py.MSH or PyVista mesh)* – The given mesh
- **points** *(str, optional)* – The points to evaluate the field at. Either the “centroids” of the mesh cells (calculated as mean of the cell vertices) or the “points” of the given mesh. Default: “centroids”
- **direction** *(str or list, optional)* – Here you can state which direction should be choosen for lower dimension. For example, if you got a 2D mesh in xz direction, you have to pass “xz”. By default, all directions are used. One can also pass a list of indices. Default: “all”
- **name** *(str or list of str, optional)* – Name(s) to store the field(s) in the given mesh as point_data or cell_data. If to few names are given, digits will be appended. Default: “field”
- ****kwargs** – Keyword arguments forwarded to __call__.

Notes

This will store the field in the given mesh under the given name, if a meshio or PyVista mesh was given.

See:

- meshio: https://github.com/nschloe/meshio
- ogs5py: https://github.com/GeoStat-Framework/ogs5py
- PyVista: https://github.com/pyvista/pyvista

**plot** *(field='field', fig=None, ax=None, **kwargs)*

Plot the spatial random field.

Parameters

- **field** *(str, optional)* – Field that should be plotted. Default: “field”
- **fig** *(Figure or None)* – Figure to plot the axes on. If None, a new one will be created. Default: None
- **ax** *(Axes or None)* – Axes to plot on. If None, a new one will be added to the figure. Default: None
- ****kwargs** – Forwarded to the plotting routine.

**post_field** *(field, name='field', process=True, save=True)*

Postprocessing field values.

Parameters

- **field** *(numpy.ndarray)* – Field values.
- **name** *(str, optional)* – Name. to store the field. The default is “field”.
- **process** *(bool, optional)* – Whether to process field to apply mean, normalizer and trend. The default is True.
• **save**(bool, optional) – Whether to store the field under the given name. The default is True.

**Returns** field – Processed field values.

**Return type** numpy.ndarray

**pre_pos**(pos=None, **mesh_type='unstructured', info=False)
Preprocessing positions and mesh_type.

**Parameters**
• **pos**(iterable) – the position tuple, containing main direction and transversal directions
• **mesh_type**(str, optional) – ‘structured’ / ‘unstructured’ Default: “unstructured”
• **info**(bool, optional) – Whether to return information

**Returns**
• **iso_pos**((d, n), numpy.ndarray) – Isometrized position tuple.
• **shape**(tuple) – Shape of the resulting field.
• **info**(dict, optional) – Information about settings.

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

**set_generator**(generator, **generator_kwargs)
Set the generator for the field.

**Parameters**
• **generator**(str, optional) – Name of the generator to use for field generation. Default: “RandMeth”
• **generator_kwargs** – keyword arguments that are forwarded to the generator in use.

**set_pos**(pos, **mesh_type='unstructured', info=False)
Set positions and mesh_type.

**Parameters**
• **pos**(iterable) – the position tuple, containing main direction and transversal directions
• **mesh_type**(str, optional) – ‘structured’ / ‘unstructured’ Default: “unstructured”
• **info**(bool, optional) – Whether to return information

**Returns** info – Information about settings.

**Return type** dict, optional

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

**structured**(*args, **kwargs)
Generate a field on a structured mesh.

See __call__

**to_pyvista**(field_select='field', **fieldname='field')
Create a VTK/PyVista grid of the stored field.
Parameters

- **field_select (str, optional)** – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”
- **fieldname (str, optional)** – Name of the field in the VTK file. Default: “field”

**transform**(method, field='field', store=True, process=False, **kwargs)

Apply field transformation.

Parameters

- **method (str)** – Method to use. See `gstools.transform` for available transformations.
- **field (str, optional)** – Name of field to be transformed. The default is “field”.
- **store (str or bool, optional)** – Whether to store field inplace (True/False) or under a given name. The default is True.
- **process (bool, optional)** – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- ****kwargs – Keyword arguments forwarded to selected method.

Raises **ValueError** – When method is unknown.

Returns Transformed field.

Return type `numpy.ndarray`

**unstructured**( *args, **kwargs)

Generate a field on an unstructured mesh.

See `__call__`

**vtk_export**(filename, field_select='field', fieldname='field')

Export the stored field to vtk.

Parameters

- **filename (str)** – Filename of the file to be saved, including the path. Note that an ending (.vtr or .vtu) will be added to the name.
- **field_select (str, optional)** – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”
- **fieldname (str, optional)** – Name of the field in the VTK file. Default: “field”

**property all_fields**

All fields as stacked list.

Type list

**default_field_names** = ['field', 'raw_field', 'raw_krige']

Default field names.

Type list

**property dim**

Dimension of the field.

Type int

**property field_names**

Names of present fields.

Type list

**property field_shape**

The shape of the field.

Type tuple
property generator
    The generator of the field.
    Type callable

property kriges
    The underlying kriging class.
    Type Krige

property latlon
    Whether the field depends on geographical coords.
    Type bool

property mean
    The mean of the field.
    Type float or callable

property mesh_type
    The mesh type of the field.
    Type str

property model
    The covariance model of the field.
    Type CovModel

property name
    The name of the class.
    Type str

property normalizer
    Normalizer of the field.
    Type Normalizer

property pos
    The position tuple of the field.
    Type tuple

property trend
    The trend of the field.
    Type float or callable

property value_type
    Type of the field values (scalar, vector).
    Type str
Field Base Class

Field([model, value_type, mean, normalizer, ...])  A base class for random fields, kriging fields, etc.

gstools.field.Field
class gstools.field.Field(model=None, value_type='scalar', mean=None, normalizer=None, trend=None, dim=None)
Bases: object
A base class for random fields, kriging fields, etc.

Parameters
- model (CovModel, optional) – Covariance Model related to the field.
- value_type (str, optional) – Value type of the field. Either “scalar” or “vector”. The default is “scalar”.
- mean (None or float or callable, optional) – Mean of the field if wanted. Could also be a callable. The default is None.
- normalizer (None or Normalizer, optional) – Normalizer to be applied to the field. The default is None.
- trend (None or float or callable, optional) – Trend of the denormalized fields. If no normalizer is applied, this behaves equal to ‘mean’. The default is None.
- dim (None or int, optional) – Dimension of the field if no model is given.

Attributes
- all_fields list: All fields as stacked list.
- dim int: Dimension of the field.
- field_names list: Names of present fields.
- field_shape tuple: The shape of the field.
- latlon bool: Whether the field depends on geographical coords.
- mean float or callable: The mean of the field.
- mesh_type str: The mesh type of the field.
- model CovModel: The covariance model of the field.
- name str: The name of the class.
- normalizer Normalizer: Normalizer of the field.
- pos tuple: The position tuple of the field.
- trend float or callable: The trend of the field.
- value_type str: Type of the field values (scalar, vector).
Methods

__call__ ([pos, field, mesh_type, ...])
Generate the field.

delete_fields ([select])
Delete selected fields.

get_store_config ([store[, default, fld_cnt]])
Get storage configuration from given selection.

mesh ([mesh[, points, direction, name]])
Generate a field on a given meshio, ogs5py or PyVista mesh.

plot ([field, fig, ax])
Plot the spatial random field.

post_field ([field[, name, process, save]])
Postprocessing field values.

pre_pos ([pos[, mesh_type, info]])
Preprocessing positions and mesh_type.

set_pos (pos[, mesh_type, info])
Set positions and mesh_type.

transform ([method[, field, store, process]])
Apply field transformation.

unstructured (*args, **kwargs)
Generate a field on an unstructured mesh.

to_pyvista ([field_select, fieldname])
Create a VTK/PyVista grid of the stored field.

vtk_export ([filename[, field_select, fieldname]])
Export the stored field to vtk.

__call__
(pos=None, field=None, mesh_type='unstructured', post_process=True, store=True)
Generate the field.

Parameters

• pos (list, optional) – the position tuple, containing main direction and transversal directions

• field (numpy.ndarray or None, optional) – the field values. Will be all zeros if None is given.

• mesh_type (str, optional) – ‘structured’ / ‘unstructured’. Default: ‘unstructured’

• post_process (bool, optional) – Whether to apply mean, normalizer and trend to the field. Default: True

• store (str or bool, optional) – Whether to store field (True/False) with default name or with specified name. The default is True for default name “field”.

Returns field – the field values.

Return type numpy.ndarray

delete_fields (select=None)
Delete selected fields.

get_store_config (store, default=None, fld_cnt=None)
Get storage configuration from given selection.

Parameters

• store (str or bool or list, optional) – Whether to store fields (True/False) with default names or with specified names. The default is True for default names.

• default (str or list, optional) – Default field names. The default is “field”.

• fld_cnt (None or int, optional) – Number of fields when using lists. The default is None.

Returns

• name (str or list) – Name(s) of field.

• save (bool or list) – Whether to save field(s).

mesh (mesh, points='centroids', direction='all', name='field', **kwargs)
Generate a field on a given meshio, ogs5py or PyVista mesh.

3.7. gstools.field 353
Parameters

- **mesh** *(meshio.Mesh or ogs5py.MSH or PyVista mesh)* – The given mesh
- **points** *(str, optional)* – The points to evaluate the field at. Either the “centroids” of the mesh cells (calculated as mean of the cell vertices) or the “points” of the given mesh. Default: “centroids”
- **direction** *(str or list, optional)* – Here you can state which direction should be chosen for lower dimension. For example, if you got a 2D mesh in xz direction, you have to pass “xz”. By default, all directions are used. One can also pass a list of indices. Default: “all”
- **name** *(str or list of str, optional)* – Name(s) to store the field(s) in the given mesh as point_data or cell_data. If to few names are given, digits will be appended. Default: “field”
- ****kwargs – Keyword arguments forwarded to *__call__*. 

Notes

This will store the field in the given mesh under the given name, if a meshio or PyVista mesh was given.

See:

- meshio: https://github.com/nschloe/meshio
- ogs5py: https://github.com/GeoStat-Framework/ogs5py
- PyVista: https://github.com/pyvista/pyvista

**plot** *(field='field', fig=None, ax=None, **kwargs)*

Plot the spatial random field.

Parameters

- **field** *(str, optional)* – Field that should be plotted. Default: “field”
- **fig** *(Figure or None)* – Figure to plot the axes on. If None, a new one will be created. Default: None
- **ax** *(Axes or None)* – Axes to plot on. If None, a new one will be added to the figure. Default: None
- ****kwargs – Forwarded to the plotting routine.

**post_field** *(field, name='field', process=True, save=True)*

Postprocessing field values.

Parameters

- **field** *(numpy.ndarray)* – Field values.
- **name** *(str, optional)* – Name to store the field. The default is “field”.
- **process** *(bool, optional)* – Whether to process field to apply mean, normalizer and trend. The default is True.
- **save** *(bool, optional)* – Whether to store the field under the given name. The default is True.

Returns **field** – Processed field values.

Return type **numpy.ndarray**

**pre_pos** *(pos=None, mesh_type='unstructured', info=False)*

Preprocessing positions and mesh_type.
Parameters
- **pos** (iterable) – the position tuple, containing main direction and transversal directions
- **mesh_type** (str, optional) – ‘structured’ / ‘unstructured’ Default: “unstructured”
- **info** (bool, optional) – Whether to return information

Returns
- **iso_pos** ((d, n), numpy.ndarray) – Isometrized position tuple.
- **shape** (tuple) – Shape of the resulting field.
- **info** (dict, optional) – Information about settings.

Warning: When setting a new position tuple that differs from the present one, all stored fields will be deleted.

```
set_pos (pos, mesh_type='unstructured', info=False)
```
Set positions and mesh_type.

Parameters
- **pos** (iterable) – the position tuple, containing main direction and transversal directions
- **mesh_type** (str, optional) – ‘structured’ / ‘unstructured’ Default: “unstructured”
- **info** (bool, optional) – Whether to return information

Returns info – Information about settings.

Return type dict, optional

Warning: When setting a new position tuple that differs from the present one, all stored fields will be deleted.

```
structured (*args, **kwargs)
```
Generate a field on a structured mesh.

See __call__

```
to_pyvista (field_select='field', fieldname='field')
```
Create a VTK/PyVista grid of the stored field.

Parameters
- **field_select** (str, optional) – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”
- **fieldname** (str, optional) – Name of the field in the VTK file. Default: “field”

```
transform (method, field='field', store=True, process=False, **kwargs)
```
Apply field transformation.

Parameters
- **method** (str) – Method to use. See gstools.transform for available transformations.
- **field** (str, optional) – Name of field to be transformed. The default is “field”.
- **store** (str or bool, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.
GeoStatTools Documentation, Release 1.3.4

- **process** (bool, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- **kwargs** – Keyword arguments forwarded to selected method.

Raises **ValueError** – When method is unknown.

Returns Transformed field.

Return type numpy.ndarray

**unstructured**(*args, **kwargs)

Generate a field on an unstructured mesh.

See **__call__**

**vtk_export** (filename, field_select='field', fieldname='field')

Export the stored field to vtk.

Parameters

- **filename** (str) – Filename of the file to be saved, including the path. Note that an ending (.vtr or .vtu) will be added to the name.
- **field_select** (str, optional) – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”
- **fieldname** (str, optional) – Name of the field in the VTK file. Default: “field”

property all_fields

All fields as stacked list.

Type list

default_field_names = ['field']

Default field names.

Type list

property dim

Dimension of the field.

Type int

property field_names

Names of present fields.

Type list

property field_shape

The shape of the field.

Type tuple

property latlon

Whether the field depends on geographical coords.

Type bool

property mean

The mean of the field.

Type float or callable

property mesh_type

The mesh type of the field.

Type str

property model

The covariance model of the field.

Type CovModel
**property name**
  The name of the class.
  
  **Type** `str`

**property normalizer**
  Normalizer of the field.
  
  **Type** `Normalizer`

**property pos**
  The position tuple of the field.
  
  **Type** `tuple`

**property trend**
  The trend of the field.
  
  **Type** `float` or `callable`

**property value_type**
  Type of the field values (scalar, vector).
  
  **Type** `str`
gstools.field.generator

GStools subpackage providing generators for spatial random fields.

The following classes are provided

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>RandMeth(model[, mode_no, seed, verbose, ...])</td>
<td>Randomization method for calculating isotropic random fields.</td>
</tr>
<tr>
<td>IncomprRandMeth(model[, mean_velocity, ...])</td>
<td>RandMeth for incompressible random vector fields.</td>
</tr>
</tbody>
</table>

class gstools.field.generator.IncomprRandMeth(model, mean_velocity=1.0, mode_no=1000, seed=None, verbose=False, **kwargs)

Bases: gstools.field.generator.RandMeth

RandMeth for incompressible random vector fields.

Parameters

- **model** (*CovModel*) – covariance model
- **mean_velocity** (*float*, optional) – the mean velocity in x-direction
- **mode_no** (*int*, optional) – number of Fourier modes. Default: 1000
- **seed** (*int* or *None*, optional) – the seed of the random number generator. If “None”, a random seed is used. Default: *None*
- **verbose** (*bool*, optional) – State if there should be output during the generation. Default: *False*
- **sampling** (*str*, optional) – Sampling strategy. Either
  - ”auto”: select best strategy depending on given model
  - ”inversion”: use inversion method
  - ”mcmc”: use mcmc sampling
- ****kwargs – Placeholder for keyword-args

Notes

The Randomization method is used to generate isotropic spatial incompressible random vector fields characterized by a given covariance model. The equation is [Kraichnan1970]:

\[ u_i(x) = \bar{u}_i \delta_{i1} + \bar{u}_i \sqrt{\frac{\sigma^2}{N}} \cdot \sum_{j=1}^{N} p_i(k_j) (Z_{1,j} \cdot \cos (\langle k_j, x \rangle) + Z_{2,j} \cdot \sin (\langle k_j, x \rangle)) \]

where:

- \( \bar{u}_i \): mean velocity in \( e_1 \) direction
- \( N \): fourier mode number
- \( Z_{k,j} \): random samples from a normal distribution
- \( k_j \): samples from the spectral density distribution of the covariance model
- \( p_i(k_j) = e_1 - \frac{k_j k_1}{k^2} \): the projector ensuring the incompressibility
Attributes

- **mode_no**: Number of modes in the randomization method.
- **model**: Covariance model of the spatial random field.
- **name**: Name of the generator.
- **sampling**: Sampling strategy.
- **seed**: Seed of the master RNG.
- **value_type**: Type of the field values (scalar, vector).
- **verbose**: Verbosity of the generator.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>call</strong> (pos)</td>
<td>Calculate the random modes for the randomization method.</td>
</tr>
<tr>
<td>get_nugget (shape)</td>
<td>Generate normal distributed values for the nugget simulation.</td>
</tr>
<tr>
<td>reset_seed (seed)</td>
<td>Recalculate the random amplitudes and wave numbers with the given seed.</td>
</tr>
<tr>
<td>update (model, seed)</td>
<td>Update the model and the seed.</td>
</tr>
</tbody>
</table>

__call__ (pos)

Calculate the random modes for the randomization method.

This method calls the `summate_incompr_*` Cython methods, which are the heart of the randomization method. In this class the method contains a projector to ensure the incompressibility of the vector field.

**Parameters**

- **pos**: The position tuple with `d` dimensions and `n` points.

**Returns**

- The random modes

**Return type**

- `numpy.ndarray`

get_nugget (shape)

Generate normal distributed values for the nugget simulation.

**Parameters**

- **shape**: The shape of the summed modes

**Returns**

- `nugget`: The nugget in the same shape as the summed modes

**Return type**

- `numpy.ndarray`

reset_seed (seed=nan)

Recalculate the random amplitudes and wave numbers with the given seed.

**Parameters**

- **seed**: The seed of the random number generator. If `None`, a random seed is used. If `numpy.nan`, the actual seed will be kept. Default: `numpy.nan`

**Notes**

- Even if the given seed is the present one, modes will be recalculated.

update (model=None, seed=nan)

Update the model and the seed.
If model and seed are not different, nothing will be done.

Parameters

- **model** ([CovModel](covmodel.md) or `None`, optional) – covariance model. Default: `None`
- **seed** (`int` or `None` or `numpy.nan`, optional) – the seed of the random number generator. If `None`, a random seed is used. If `numpy.nan`, the actual seed will be kept. Default: `numpy.nan`

**property mode_no**
Number of modes in the randomization method.

  *Type: int*

**property model**
Covariance model of the spatial random field.

  *Type: CovModel*

**property name**
Name of the generator.

  *Type: str*

**property sampling**
Sampling strategy.

  *Type: str*

**property seed**
Seed of the master RNG.

  *Type: int*

Notes

If a new seed is given, the setter property not only saves the new seed, but also creates new random modes with the new seed.

  *Type: int*

**property value_type**
Type of the field values (scalar, vector).

  *Type: str*

**property verbose**
Verbosity of the generator.

  *Type: bool*

class `gstools.field.generator.RandMeth(model, mode_no=1000, seed=None, verbose=False, sampling='auto', **kwargs)`
Bases: `object`

Randomization method for calculating isotropic random fields.

Parameters

- **model** ([CovModel](covmodel.md)) – Covariance model
- **mode_no** (`int`, optional) – Number of Fourier modes. Default: 1000
- **seed** (`int` or `None`, optional) – The seed of the random number generator. If “None”, a random seed is used. Default: `None`
- **verbose** (`bool`, optional) – Be chatty during the generation. Default: `False`
- **sampling** (`str`, optional) – Sampling strategy. Either
- "auto": select best strategy depending on given model
- "inversion": use inversion method
- "mcmc": use mcmc sampling
  • **kwargs – Placeholder for keyword-args

Notes

The Randomization method is used to generate isotropic spatial random fields characterized by a given covariance model. The calculation looks like [Hesse2014]:

\[ u(x) = \sqrt{\frac{\sigma^2}{N}} \sum_{i=1}^{N} (Z_{1,i} \cdot \cos(k_i \cdot x) + Z_{2,i} \cdot \sin(k_i \cdot x)) \]

where:

- \( N \): fourier mode number
- \( Z_{j,i} \): random samples from a normal distribution
- \( k_i \): samples from the spectral density distribution of the covariance model

References

Attributes

- **mode_no** int: Number of modes in the randomization method.
- **model** CovModel: Covariance model of the spatial random field.
- **name** str: Name of the generator.
- **sampling** str: Sampling strategy.
- **seed** int: Seed of the master RNG.
- **value_type** str: Type of the field values (scalar, vector).
- **verbose** bool: Verbosity of the generator.

Methods

- **__call__(pos[, add_nugget])** Calculate the random modes for the randomization method.
  
- **get_nugget(shape)** Generate normal distributed values for the nugget simulation.

reset_seed([seed]) Recalculate the random amplitudes and wave numbers with the given seed.

- **update([model, seed])** Update the model and the seed.

- **__call__(pos, add_nugget=True)** Calculate the random modes for the randomization method.

This method calls the *summate_* Cython methods, which are the heart of the randomization method.

Parameters

- **pos ((d, n), numpy.ndarray)** – the position tuple with d dimensions and n points.
- **add_nugget (bool)** – Whether to add nugget noise to the field.

Returns the random modes
Return type: `numpy.ndarray`

**get_nugget** *(shape)*  
Generate normal distributed values for the nugget simulation.  

**Parameters**  
- **shape** *(tuple)* – the shape of the summed modes  

**Returns**  
- **nugget** – the nugget in the same shape as the summed modes  

**Return type** `numpy.ndarray`

**reset_seed** *(seed=nan)*  
Recalculate the random amplitudes and wave numbers with the given seed.  

**Parameters**  
- **seed** *(int or None or numpy.nan, optional)* – the seed of the random number generator. If None, a random seed is used. If numpy.nan, the actual seed will be kept. Default: `numpy.nan`

**Notes**  
Even if the given seed is the present one, modes will be recalculated.

**update** *(model=None, seed=nan)*  
Update the model and the seed.  
If model and seed are not different, nothing will be done.  

**Parameters**  
- **model** *(CovModel or None, optional)* – covariance model. Default: None  
- **seed** *(int or None or numpy.nan, optional)* – the seed of the random number generator. If None, a random seed is used. If numpy.nan, the actual seed will be kept. Default: `numpy.nan`

**property mode_no**  
Number of modes in the randomization method.  

**Type** `int`

**property model**  
Covariance model of the spatial random field.  

**Type** `CovModel`

**property name**  
Name of the generator.  

**Type** `str`

**property sampling**  
Sampling strategy.  

**Type** `str`

**property seed**  
Seed of the master RNG.  

**Notes**  
If a new seed is given, the setter property not only saves the new seed, but also creates new random modes with the new seed.  

**Type** `int`
property value_type
   Type of the field values (scalar, vector).
   Type str

property verbose
   Verbosity of the generator.
   Type bool
gstools.field.upscaling

GStools subpackage providing upscaling routines for the spatial random field.

The following functions are provided

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>var_coarse_graining(model[, point_volumes])</code></td>
<td>Coarse Graning procedure to upscale the variance for uniform flow.</td>
</tr>
<tr>
<td><code>var_no_scaling(model, *args, **kwargs)</code></td>
<td>Dummy function to bypass scaling.</td>
</tr>
</tbody>
</table>

### `gstools.field.upscaling.var_coarse_graining(model, point_volumes=0.0)`

Coarse Graning procedure to upscale the variance for uniform flow.

**Parameters**

- `model` (*CovModel*) – Covariance Model used for the field.
- `point_volumes` (float or numpy.ndarray) – Volumes of the elements at the given points. Default: 0

**Returns**

- `scaled_var` – The upscaled variance

**Return type**

float or numpy.ndarray

### Notes

This procedure was presented in [Attinger03]. It applies the upscaling procedure ‘Coarse Graning’ to the Groundwater flow equation under uniform flow on a lognormal distributed conductivity field following a gaussian covariance function. A filter over a cube with a given edge-length \( \lambda \) is applied and an upscaled conductivity field is obtained. The upscaled field is again following a gaussian covariance function with scale dependent variance and length-scale:

\[
\lambda = V^{\frac{1}{3}} \\
\sigma^2(\lambda) = \sigma^2 \cdot \left( \frac{\ell^2}{\ell^2 + (\frac{\lambda}{2})^2} \right)^{\frac{3}{4}} \\
\ell(\lambda) = \left( \ell^2 + \left(\frac{\lambda}{2}\right)^2 \right)^{\frac{1}{2}}
\]

Therby \( \lambda \) will be calculated from the given `point_volumes` \( V \) by assuming a cube with the given volume. The upscaled length scale will be ignored by this routine.

### References

gstools.field.upscaling.var_no_scaling(model, *args, **kwargs)

Dummy function to bypass scaling.

**Parameters**

- `model` (*CovModel*) – Covariance Model used for the field.

**Returns**

- `var` – The model variance.

**Return type** float
3.8 gstools.variogram

GStools subpackage providing tools for estimating and fitting variograms.

Variogram estimation

```
vario_estimate(pos, field[, bin_edges, ...]) Estimates the empirical variogram.
vario_estimate_axis(field[, direction, ...]) Estimates the variogram along array axis.
```

gstools.variogram.vario_estimate

gstools.variogram.vario_estimate(pos, field, bin_edges=None, sampling_size=None, sampling_seed=None, estimator='matheron', latlon=False, direction=None, angles=None, angles_tol=0.39269908169872414, bandwidth=None, no_data=nan, mask=False, mesh_type='unstructured', return_counts=False, mean=None, normalizer=None, trend=None, fit_normalizer=False)

Estimates the empirical variogram.

The algorithm calculates following equation:

\[ \gamma(r_k) = \frac{1}{2} \frac{1}{N(r_k)} \sum_{i=1}^{N(r_k)} (z(x_i) - z(x'_i))^2, \]

with \( r_k \leq ||x_i - x'_i|| < r_{k+1} \) being the bins.

Or if the estimator “cressie” was chosen:

\[ \gamma(r_k) = \frac{1}{2} \left( \frac{1}{N(r_k)} \sum_{i=1}^{N(r_k)} |z(x_i) - z(x'_i)|^{0.5} \right)^4 \]

with \( r_k \leq ||x_i - x'_i|| < r_{k+1} \) being the bins. The Cressie estimator is more robust to outliers [Webster2007].

By providing `direction` vector[s] or angles, a directional variogram can be calculated. If multiple directions are given, a set of variograms will be returned. Directional binning is controlled by a given angle tolerance (`angles_tol`) and an optional `bandwidth`, that truncates the width of the search band around the given direction[s].

To reduce the calculation time, `sampling_size` could be passed to sample down the number of field points.

Parameters

- `pos` (list) – the position tuple, containing either the point coordinates (x, y, ...) or the axes descriptions (for `mesh_type='structured'`)
- `field` (numpy.ndarray or list of numpy.ndarray) – The spatially distributed data. Can also be of type `numpy.ma.MaskedArray` to use masked values. You can pass a list of fields, that will be used simultaneously. This could be helpful, when there are multiple realizations at the same points, with the same statistical properties.
- `bin_edges` (numpy.ndarray, optional) – the bins on which the variogram will be calculated. If `None` are given, standard bins provided by the `standard_bins` routine will be used. Default: `None`
- `sampling_size` (int or `None`, optional) – for large input data, this method can take a long time to compute the variogram, therefore this argument specifies the number of data points to sample randomly. Default: `None`
• **sampling_seed** *(int or None, optional)* – seed for samples if sampling_size is given. Default: None

• **estimator** *(str, optional)* – the estimator function, possible choices:
  - ”matheron”: the standard method of moments of Matheron
  - ”cressie”: an estimator more robust to outliers
  Default: “matheron”

• **latlon** *(bool, optional)* – Whether the data is representing 2D fields on earth's surface described by latitude and longitude. When using this, the estimator will use great-circle distance for variogram estimation. Note, that only an isotropic variogram can be estimated and a ValueError will be raised, if a direction was specified. Bin edges need to be given in radians in this case. Default: False

• **direction** *(list of numpy.ndarray, optional)* – directions to evaluate a directional variogram. Angular tolerance is given by angles_tol. bandwidth to cut off how wide the search for point pairs should be is given by bandwidth. You can provide multiple directions at once to get one variogram for each direction. For a single direction you can also use the angles parameter, to provide the direction by its spherical coordinates. Default: None

• **angles** *(numpy.ndarray, optional)* – the angles of the main axis to calculate the variogram for in radians angle definitions from ISO standard 80000-2:2009 for 1d this parameter will have no effect at all for 2d supply one angle which is azimuth \( \varphi \) (ccw from +x in xy plane) for 3d supply two angles which are azimuth \( \varphi \) (ccw from +x in xy plane) and inclination \( \theta \) (cw from +z). Can be used instead of direction. Default: None

• **angles_tol** *(class:float, optional)* – the tolerance around the variogram angle to count a point as being within this direction from another point (the angular tolerance around the directional vector given by angles) Default: \( \pi / 8 = 22.5^\circ \)

• **bandwidth** *(class:float, optional)* – bandwidth to cut off the angular tolerance for directional variograms. If None is given, only the angles_tol parameter will control the point selection. Default: None

• **no_data** *(float, optional)* – Value to identify missing data in the given field. Default: numpy.nan

• **mask** *(numpy.ndarray of bool, optional)* – Mask to deselect data in the given field. Default: numpy.ma.nomask

• **mesh_type** *(str, optional)* – ‘structured’ / ‘unstructured’, indicates whether the pos tuple describes the axis or the point coordinates. Default: ‘unstructured’

• **return_counts** *(bool, optional)* – if set to true, this function will also return the number of data points found at each lag distance as a third return value Default: False

• **mean** *(float, optional)* – mean value used to shift normalized input data. Can also be a callable. The default is None.

• **normalizer** *(None or Normalizer, optional)* – Normalizer to be applied to the input data to gain normality. The default is None.

• **trend** *(None or float or callable, optional)* – A callable trend function. Should have the signature: \( f(x, [y, z, \ldots]) \) If no normalizer is applied, this behaves equal to ‘mean’. The default is None.

• **fit_normalizer** *(bool, optional)* – Wheater to fit the data-normalizer to the given (detrended) field. Default: False

Returns

• **bin_center** *(n, numpy.ndarray)* – The bin centers.
• **gamma** ((n) or (d, n), `numpy.ndarray`) – The estimated variogram values at bin centers. Is stacked if multiple directions (d>1) are given.

• **counts** ((n) or (d, n), `numpy.ndarray`, optional) – The number of point pairs found for each bin. Is stacked if multiple directions (d>1) are given. Only provided if return_counts is True.

• **normalizer** (`Normalizer`, optional) – The fitted normalizer for the given data. Only provided if fit_normalizer is True.

**Notes**

Internally uses double precision and also returns doubles.

**References**

`gstools.variogram.vario_estimate_axis`

Estimates the variogram along array axis.

The algorithm calculates following equation:

\[
\gamma(r_k) = \frac{1}{2N(r_k)} \sum_{i=1}^{N(r_k)} (z(x_i) - z(x'_i))^2,
\]

with \(r_k \leq \|x_i - x'_i\| < r_{k+1}\) being the bins.

Or if the estimator “cressie” was chosen:

\[
\gamma(r_k) = \frac{1}{2} \left( \frac{1}{N(r_k)} \sum_{i=1}^{N(r_k)} |z(x_i) - z(x'_i)|^{0.5} \right)^4
\]

with \(r_k \leq \|x_i - x'_i\| < r_{k+1}\) being the bins. The Cressie estimator is more robust to outliers [Webster2007].

**Parameters**

• **field** (`numpy.ndarray` or `numpy.ma.MaskedArray`) – the spatially distributed data (can be masked)

• **direction** (`str` or `int`) – the axis over which the variogram will be estimated (x, y, z) or (0, 1, 2, ...)

• **estimator** (`str`, optional) – the estimator function, possible choices:
  - "matheron": the standard method of moments of Matheron
  - "cressie": an estimator more robust to outliers

  Default: “matheron”

• **no_data** (`float`, optional) – Value to identify missing data in the given field. Default: `numpy.nan`

**Returns** the estimated variogram along the given direction.

**Return type** `numpy.ndarray`

**Warning:** It is assumed that the field is defined on an equidistant Cartesian grid.
Binning

\texttt{standard_bins([pos, dim, latlon, mesh_type, ...])}

\texttt{gstools.variogram.standard_bins}

\texttt{gstools.variogram.standard_bins(pos=\text{None}, \quad \ quad
### 3.9 gstools.krige

GStools subpackage providing kriging.

**Kriging Classes**

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kriging(model, cond_pos, cond_val[, ...])</td>
<td>A Swiss Army knife for kriging.</td>
</tr>
<tr>
<td>Simple(model, cond_pos, cond_val[, mean, ...])</td>
<td>Simple kriging.</td>
</tr>
<tr>
<td>Ordinary(model, cond_pos, cond_val[, ...])</td>
<td>Ordinary kriging.</td>
</tr>
<tr>
<td>Universal(model, cond_pos, cond_val[, ...])</td>
<td>Universal kriging.</td>
</tr>
<tr>
<td>ExtDrift(model, cond_pos, cond_val, ext_drift)</td>
<td>External drift kriging (EDK).</td>
</tr>
<tr>
<td>Detrended(model, cond_pos, cond_val, trend)</td>
<td>Detrended simple kriging.</td>
</tr>
</tbody>
</table>

**gstools.krige.Krige**

```python
class gstools.krige.Krige(model, cond_pos, cond_val, drift_functions=None, ext_drift=None, mean=None, normalizer=None, trend=None, unbiased=True, exact=False, cond_err='nugget', pseudo_inv=True, pseudo_inv_type='pinv', fit_normalizer=False, fit_variogram=False)
```

**Bases:** `gstools.field.base.Field`

A Swiss Army knife for kriging.

A Kriging class enabling the basic kriging routines: Simple-, Ordinary-, Universal-, External Drift- and detrended/regression-Kriging as well as Kriging the Mean [Wackernagel2003].

**Parameters**

- `model` *(CovModel)* – Covariance Model used for kriging.
- `cond_pos` *(list)* – tuple, containing the given condition positions (x, [y, z])
- `cond_val` *(numpy.ndarray)* – the values of the conditions (nan values will be ignored)
- `drift_functions` *(list of callable, str or int)* – Either a list of callable functions, an integer representing the polynomial order of the drift or one of the following strings:
  - "linear" : regional linear drift (equals order=1)
  - "quadratic" : regional quadratic drift (equals order=2)
- `ext_drift` *(numpy.ndarray or None, optional)* – the external drift values at the given cond. positions.
- `mean` *(float, optional)* – mean value used to shift normalized conditioning data. Could also be a callable. The default is None.
- `normalizer` *(None or Normalizer, optional)* – Normalizer to be applied to the input data to gain normality. The default is None.
- `trend` *(None or float or callable, optional)* – A callable trend function. Should have the signature: f(x, [y, z, ...]) This is used for detrended kriging, where the trended is subtracted from the conditions before kriging is applied. This can be used for regression kriging, where the trend function is determined by an external regression algorithm. If no normalizer is applied, this behaves equal to ‘mean’. The default is None.
- `unbiased` *(bool, optional)* – Whether the kriging weights should sum up to 1, so the estimator is unbiased. If unbiased is *False* and no drifts are given, this results in simple kriging. Default: True
• **exact** *(bool, optional)* – Whether the interpolator should reproduce the exact input values. If `False`, `cond_err` is interpreted as measurement error at the conditioning points and the result will be more smooth. Default: `False`

• **cond_err** *(str, :class float or list, optional)* – The measurement error at the conditioning points. Either “nugget” to apply the model-nugget, a single value applied to all points or an array with individual values for each point. The “exact=True” variant only works with “cond_err=’nugget’”. Default: “nugget”

• **pseudo_inv** *(bool, optional)* – Whether the kriging system is solved with the pseudo inverted kriging matrix. If `True`, this leads to more numerical stability and redundant points are averaged. But it can take more time. Default: `True`

• **pseudo_inv_type** *(str or callable, optional)* – Here you can select the algorithm to compute the pseudo-inverse matrix:
  - ”pinv”: use `pinv` from `scipy` which uses `lstsq`
  - ”pinv2”: use `pinv2` from `scipy` which uses `SVD`
  - ”pinvh”: use `pinvh` from `scipy` which uses eigen-values

  If you want to use another routine to invert the kriging matrix, you can pass a callable which takes a matrix and returns the inverse. Default: ”pinv”

• **fit_normalizer** *(bool, optional)* – Wheater to fit the data-normalizer to the given conditioning data. Default: `False`

• **fit_variogram** *(bool, optional)* – Wheater to fit the given variogram model to the data. This is done by using isotropy settings of the given model, assuming the sill to be the data variance and with the standard bins provided by the `standard_bins` routine. Default: `False`

---

**Notes**

If you have changed any properties in the class, you can update the kriging setup by calling `Krig.set_condition` without any arguments.

---

**References**

**Attributes**

- **all_fields** list: All fields as stacked list.
- **cond_err** list: The measurement errors at the condition points.
- **cond_ext_drift** numpy.ndarray: The ext. drift at the conditions.
- **cond_mean** numpy.ndarray: Trend at the conditions.
- **cond_no** int: The number of the conditions.
- **cond_pos** list: The position tuple of the conditions.
- **cond_trend** numpy.ndarray: Trend at the conditions.
- **cond_val** list: The values of the conditions.
- **dim** int: Dimension of the field.
- **drift_functions** list of callable: The drift functions.
- **drift_no** int: Number of drift values per point.
- **exact** bool: Whether the interpolator is exact.
- **ext_drift_no** int: Number of external drift values per point.
**field_names** list: Names of present fields.

**field_shape** tuple: The shape of the field.

**has_const_mean** bool: Whether the field has a constant mean or not.

**int_drift_no** int: Number of internal drift values per point.

**krige_size** int: Size of the kriging system.

**latlon** bool: Whether the field depends on geographical coords.

**mean** float or callable: The mean of the field.

**mesh_type** str: The mesh type of the field.

**model** CovModel: The covariance model of the field.

**name** str: The name of the class.

**normalizer** Normalizer: Normalizer of the field.

**pos** tuple: The position tuple of the field.

**pseudo_inv** bool: Whether pseudo inverse matrix is used.

**pseudo_inv_type** str: Method selector for pseudo inverse calculation.

**trend** float or callable: The trend of the field.

**unbiased** bool: Whether the kriging is unbiased or not.

**value_type** str: Type of the field values (scalar, vector).

### Methods

```
__call__ ((pos, mesh_type, ext_drift, ...)) Generate the kriging field.
delete_fields ([select]) Delete selected fields.
get_mean ([post_process]) Calculate the estimated mean of the detrended field.
get_store_config (store[, default, fld_cnt]) Get storage configuration from given selection.

mesh (mesh[, points, direction, name]) Generate a field on a given meshio, ogs5py or PyVista mesh.

plot ([field, fig, ax]) Plot the spatial random field.
post_field ([field[, name, process, save]]) Postprocessing field values.
pre_pos ([pos, mesh_type, info]) Preprocessing positions and mesh_type.
set_condition ([cond_pos, cond_val, ...]) Set the conditions for kriging.
set_drift_functions ([drift functions]) Set the drift functions for universal kriging.
set_pos ([pos, mesh_type, info]) Set positions and mesh_type.
structured (*args, **kwargs) Generate a field on a structured mesh.
to_pyvista ([field_select, fieldname]) Create a VTK/PyVista grid of the stored field.
transform ([method[, field, store, process]]) Apply field transformation.
unstructured (*args, **kwargs) Generate a field on an unstructured mesh.

vtk_export (filename[, field_select, fieldname]) Export the stored field to vtk.
```

___call__ (pos=None, mesh_type='structured', ext_drift=None, chunk_size=None, only_mean=False, return_var=True, post_process=True, store=True) Generate the kriging field.

The field is saved as `self.field` and is also returned. The error variance is saved as `self.krige_var` and is also returned.

### Parameters
• **pos** ([list](https://docs.python.org/3/library/stdtypes.html#list), optional) – the position tuple, containing main direction and transversal directions \((x, [y, z])\)

• **mesh_type** ([str](https://docs.python.org/3/library/stdtypes.html#str), optional) – ‘structured’ / ‘unstructured’

• **ext_drift** ([numpy.ndarray](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html) or [None](https://docs.python.org/3/library/NoneType.html), optional) – the external drift values at the given positions (only for EDK)

• **chunk_size** ([int](https://docs.python.org/3/library/stdtypes.html#int), optional) – Chunk size to cut down the size of the kriging system to prevent memory errors. Default: None

• **only_mean** ([bool](https://docs.python.org/3/library/stdtypes.html#bool), optional) – Whether to only calculate the mean of the kriging field. Default: False

• **return_var** ([bool](https://docs.python.org/3/library/stdtypes.html#bool), optional) – Whether to return the variance along with the field. Default: True

• **post_process** ([bool](https://docs.python.org/3/library/stdtypes.html#bool), optional) – Whether to apply mean, normalizer and trend to the field. Default: True

• **store** ([str](https://docs.python.org/3/library/stdtypes.html#str) or [bool](https://docs.python.org/3/library/stdtypes.html#bool) or [list](https://docs.python.org/3/library/stdtypes.html#list), optional) – Whether to store kriging fields (True/False) with default name or with specified names. The default is True for default names [“field”, “krige_var”] or “mean_field” if only_mean=True.

**Returns**

• **field** ([numpy.ndarray](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html)) – the kriged field or mean_field

• **krige_var** ([numpy.ndarray](https://numpy.org/doc/stable/reference/generated/numpy.ndarray.html), optional) – the kriging error variance (if return_var is True and only_mean is False)

**delete_fields** ([select=None](https://docs.python.org/3/library/typing.html#typing.Optional))

Delete selected fields.

**get_mean** (*post_process=True*)

Calculate the estimated mean of the detrended field.

**Parameters**

post_process ([bool](https://docs.python.org/3/library/stdtypes.html#bool), optional) – Whether to apply field-mean and normalizer. Default: True

**Returns**

mean – Mean of the Kriging System.

**Return type** [float](https://docs.python.org/3/library/stdtypes.html#float) or None

**Notes**

Only not None if the Kriging System has a constant mean. This means, no drift is given and the given field-mean is constant. The result is neglecting a potential given trend.

**get_store_config** (*store=None, default=None, fld_cnt=None*)

Get storage configuration from given selection.

**Parameters**

• **store** ([str](https://docs.python.org/3/library/stdtypes.html#str) or [bool](https://docs.python.org/3/library/stdtypes.html#bool) or [list](https://docs.python.org/3/library/stdtypes.html#list), optional) – Whether to store fields (True/False) with default names or with specified names. The default is True for default names.

• **default** ([str](https://docs.python.org/3/library/stdtypes.html#str) or [list](https://docs.python.org/3/library/stdtypes.html#list), optional) – Default field names. The default is “field”.

• **fld_cnt** ([None](https://docs.python.org/3/library/NoneType.html) or [int](https://docs.python.org/3/library/stdtypes.html#int), optional) – Number of fields when using lists. The default is None.

**Returns**

• **name** ([str](https://docs.python.org/3/library/stdtypes.html#str) or [list](https://docs.python.org/3/library/stdtypes.html#list)) – Name(s) of field.

• **save** ([bool](https://docs.python.org/3/library/stdtypes.html#bool) or [list](https://docs.python.org/3/library/stdtypes.html#list)) – Whether to save field(s).
mesh(mesh, points='centroids', direction='all', name='field', **kwargs)
Generate a field on a given meshio, ogs5py or PyVista mesh.

Parameters

- mesh (meshio.Mesh or ogs5py.MSH or PyVista mesh) – The given mesh
- points (str, optional) – The points to evaluate the field at. Either the “centroids” of the mesh cells (calculated as mean of the cell vertices) or the “points” of the given mesh. Default: “centroids”
- direction (str or list, optional) – Here you can state which direction should be choosen for lower dimension. For example, if you got a 2D mesh in xz direction, you have to pass “xz”. By default, all directions are used. One can also pass a list of indices. Default: “all”
- name (str or list of str, optional) – Name(s) to store the field(s) in the given mesh as point_data or cell_data. If to few names are given, digits will be appended. Default: “field”
- **kwargs – Keyword arguments forwarded to __call__.

Notes

This will store the field in the given mesh under the given name, if a meshio or PyVista mesh was given.

See:
- meshio: https://github.com/nschloe/meshio
- ogs5py: https://github.com/GeoStat-Framework/ogs5py
- PyVista: https://github.com/pyvista/pyvista

plot(field='field', fig=None, ax=None, **kwargs)
Plot the spatial random field.

Parameters

- field (str, optional) – Field that should be plotted. Default: “field”
- fig (Figure or None) – Figure to plot the axes on. If None, a new one will be created. Default: None
- ax (Axes or None) – Axes to plot on. If None, a new one will be added to the figure. Default: None
- **kwargs – Forwarded to the plotting routine.

post_field(field, name='field', process=True, save=True)
Postprocessing field values.

Parameters

- field (numpy.ndarray) – Field values.
- name (str, optional) – Name to store the field. The default is “field”.
- process (bool, optional) – Whether to process field to apply mean, normalizer and trend. The default is True.
- save (bool, optional) – Whether to store the field under the given name. The default is True.

Returns field – Processed field values.

Return type numpy.ndarray
**pre_pos** *(pos=None, mesh_type='unstructured', info=False)*

Preprocessing positions and mesh_type.

Parameters

- **pos** *(iterable)* – the position tuple, containing main direction and transversal directions
- **mesh_type** *(str, optional)* – ‘structured’ / ‘unstructured’ Default: “unstructured”
- **info** *(bool, optional)* – Whether to return information

Returns

- **iso_pos** *((d, n), numpy.ndarray)* – Isometrized position tuple.
- **shape** *(tuple)* – Shape of the resulting field.
- **info** *(dict, optional)* – Information about settings.

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

**set_condition** *(cond_pos=None, cond_val=None, ext_drift=None, cond_err=None, fit_normalizer=False, fit_variogram=False)*

Set the conditions for kriging.

This method could also be used to update the kriging setup, when properties were changed. Then you can call it without arguments.

Parameters

- **cond_pos** *(list, optional)* – the position tuple of the conditions \((x, [y, z])\). Default: current.
- **cond_val** *(numpy.ndarray, optional)* – the values of the conditions \((\text{nan values will be ignored})\). Default: current.
- **ext_drift** *(numpy.ndarray or None, optional)* – the external drift values at the given conditions (only for EDK) For multiple external drifts, the first dimension should be the index of the drift term. When passing None, the existing external drift will be used.
- **cond_err** *(str, :class float, list, optional)* – The measurement error at the conditioning points. Either “nugget” to apply the model-nugget, a single value applied to all points or an array with individual values for each point. The measurement error has to be <= nugget. The “exact=True” variant only works with “cond_err=’nugget’”. Default: “nugget”
- **fit_normalizer** *(bool, optional)* – Wheater to fit the data-normalizer to the given conditioning data. Default: False
- **fit_variogram** *(bool, optional)* – Wheater to fit the given variogram model to the data. This is done by using isotropy settings of the given model, assuming the sill to be the data variance and with the standard bins provided by the :meth standard_bins routine. Default: False

**set_drift_functions** *(drift_functions=None)*

Set the drift functions for universal kriging.

Parameters **drift_functions** *(list of callable, str or int)* – Either a list of callable functions, an integer representing the polynomial order of the drift or one of the following strings:

- ”linear” : regional linear drift (equals order=1)
- ”quadratic” : regional quadratic drift (equals order=2)
Raises `ValueError` – If the given drift functions are not callable.

**set_pos** *(pos, mesh_type='unstructured', info=False)*

Set positions and mesh_type.

**Parameters**

- **pos** (iterable) – the position tuple, containing main direction and transversal directions
- **mesh_type** (str, optional) – ‘structured’ / ‘unstructured’ Default: “unstructured”
- **info** (bool, optional) – Whether to return information

**Returns** **info** – Information about settings.

**Return type** dict, optional

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

**structured** (*args, **kwargs)*

Generate a field on a structured mesh.

See **__call__**

**to_pyvista** *(field_select='field', fieldname='field')*

Create a VTK/PyVista grid of the stored field.

**Parameters**

- **field_select** (str, optional) – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”
- **fieldname** (str, optional) – Name of the field in the VTK file. Default: “field”

**transform** *(method, field='field', store=True, process=False, **kwargs)*

Apply field transformation.

**Parameters**

- **method** (str) – Method to use. See `gstools.transform` for available transformations.
- **field** (str, optional) – Name of field to be transformed. The default is “field”.
- **store** (str or bool, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.
- **process** (bool, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- ****kwargs – Keyword arguments forwarded to selected method.

**Raises** `ValueError` – When method is unknown.

**Returns** Transformed field.

**Return type** numpy.ndarray

**unstructured** (*args, **kwargs)*

Generate a field on an unstructured mesh.

See **__call__**

**vtk_export** *(filename, field_select='field', fieldname='field')*

Export the stored field to vtk.

**Parameters**
property all_fields
All fields as stacked list.

    Type list

property cond_err
The measurement errors at the condition points.

    Type list

property cond_ext_drift
The ext. drift at the conditions.

    Type numpy.ndarray

property cond_mean
Trend at the conditions.

    Type numpy.ndarray

property cond_no
The number of the conditions.

    Type int

property cond_pos
The position tuple of the conditions.

    Type list

property cond_trend
Trend at the conditions.

    Type numpy.ndarray

property cond_val
The values of the conditions.

    Type list

default_field_names = ['field', 'krige_var', 'mean_field']
Default field names.

    Type list

property dim
Dimension of the field.

    Type int

property drift_functions
The drift functions.

    Type list of callable

property drift_no
Number of drift values per point.

    Type int

property exact
Whether the interpolator is exact.

    Type bool
property ext_drift_no
Number of external drift values per point.
Type int

property field_names
Names of present fields.
Type list

property field_shape
The shape of the field.
Type tuple

property has_const_mean
Whether the field has a constant mean or not.
Type bool

property int_drift_no
Number of internal drift values per point.
Type int

property krige_size
Size of the kriging system.
Type int

property latlon
Whether the field depends on geographical coords.
Type bool

property mean
The mean of the field.
Type float or callable

property mesh_type
The mesh type of the field.
Type str

property model
The covariance model of the field.
Type CovModel

property name
The name of the class.
Type str

property normalizer
Normalizer of the field.
Type Normalizer

property pos
The position tuple of the field.
Type tuple

property pseudo_inv
Whether pseudo inverse matrix is used.
Type bool

property pseudo_inv_type
Method selector for pseudo inverse calculation.
property trend
   The trend of the field.
   Type float or callable

property unbiased
   Whether the kriging is unbiased or not.
   Type bool

property value_type
   Type of the field values (scalar, vector).
   Type str
Simple kriging is used to interpolate data with a given mean.

**Parameters**

- **model** (*CovModel*) – Covariance Model used for kriging.
- **cond_pos** (*list*) – tuple, containing the given condition positions (x, [y, z])
- **cond_val** (*numpy.ndarray*) – the values of the conditions (nan values will be ignored)
- **mean** (*float, optional*) – mean value used to shift normalized conditioning data. Could also be a callable. The default is None.
- **normalizer** (*None or Normalizer, optional*) – Normalizer to be applied to the input data to gain normality. The default is None.
- **trend** (*None or float or callable, optional*) – A callable trend function. Should have the signature: f(x, [y, z, ...]) This is used for detrended kriging, where the trended is subtracted from the conditions before kriging is applied. This can be used for regression kriging, where the trend function is determined by an external regression algorithm. If no normalizer is applied, this behaves equal to ‘mean’. The default is None.
- **exact** (*bool, optional*) – Whether the interpolator should reproduce the exact input values. If False, **cond_err** is interpreted as measurement error at the conditioning points and the result will be more smooth. Default: False
- **cond_err** (*str, :class float or list, optional*) – The measurement error at the conditioning points. Either “nugget” to apply the model-nugget, a single value applied to all points or an array with individual values for each point. The measurement error has to be <= nugget. The “exact=True” variant only works with “cond_err='nugget'”. Default: “nugget”
- **pseudo_inv** (*bool, optional*) – Whether the kriging system is solved with the pseudo inverted kriging matrix. If True, this leads to more numerical stability and redundant points are averaged. But it can take more time. Default: True
- **pseudo_inv_type** (*str or callable, optional*) – Here you can select the algorithm to compute the pseudo-inverse matrix:
  - "pinv": use **pinv** from **scipy** which uses **lstsq**
  - "pinv2": use **pinv2** from **scipy** which uses **SVD**
  - "pinvh": use **pinvh** from **scipy** which uses eigen-values
  If you want to use another routine to invert the kriging matrix, you can pass a callable which takes a matrix and returns the inverse. Default: “pinv”
- **fit_normalizer** (*bool, optional*) – Wheater to fit the data-normalizer to the given conditioning data. Default: False
- **fit_variogram** (*bool, optional*) – Wheater to fit the given variogram model to the data. This is done by using isotropy settings of the given model, assuming the sill to be the data variance and with the standard bins provided by the **standard_bins** routine. Default: False

**Attributes**
**Fields**

- `all_fields` list: All fields as stacked list.
- `cond_err` list: The measurement errors at the condition points.
- `cond_ext_drift` numpy.ndarray: The ext. drift at the conditions.
- `cond_mean` numpy.ndarray: Trend at the conditions.
- `cond_no` int: The number of the conditions.
- `cond_pos` list: The position tuple of the conditions.
- `cond_trend` numpy.ndarray: Trend at the conditions.
- `cond_val` list: The values of the conditions.
- `dim` int: Dimension of the field.
- `drift_functions` list of callable: The drift functions.
- `drift_no` int: Number of drift values per point.
- `exact` bool: Whether the interpolator is exact.
- `ext_drift_no` int: Number of external drift values per point.
- `field_names` list: Names of present fields.
- `field_shape` tuple: The shape of the field.
- `has_const_mean` bool: Whether the field has a constant mean or not.
- `int_drift_no` int: Number of internal drift values per point.
- `krige_size` int: Size of the kriging system.
- `latlon` bool: Whether the field depends on geographical coords.
- `mean` float or callable: The mean of the field.
- `mesh_type` str: The mesh type of the field.
- `model` CovModel: The covariance model of the field.
- `name` str: The name of the class.
- `normalizer Normalizer`: Normalizer of the field.
- `pos` tuple: The position tuple of the field.
- `pseudo_inv` bool: Whether pseudo inverse matrix is used.
- `pseudo_inv_type` str: Method selector for pseudo inverse calculation.
- `trend` float or callable: The trend of the field.
- `unbiased` bool: Whether the kriging is unbiased or not.
- `value_type` str: Type of the field values (scalar, vector).

**Methods**

- `__call__([pos, mesh_type, ext_drift, ...])`: Generate the kriging field.
- `delete_fields([select])`: Delete selected fields.
- `get_mean([post_process])`: Calculate the estimated mean of the detrended field.
- `get_store_config(store[, default, fld_cnt])`: Get storage configuration from given selection.
- `mesh(mesh[, points, direction, name])`: Generate a field on a given meshio, ogs5py or PyVista mesh.
- `plot([field, fig, ax])`: Plot the spatial random field.

continues on next page
post_field(field[, name, process, save]) Postprocessing field values.

pre_pos([pos, mesh_type, info]) Preprocessing positions and mesh_type.

set_condition([cond_pos, cond_val, ...]) Set the conditions for kriging.

set_drift_functions([drift_functions]) Set the drift functions for universal kriging.

set_pos(pos[, mesh_type, info]) Set positions and mesh_type.

structured(*args, **kwargs) Generate a field on a structured mesh.

to_pyvista(field_select, fieldname) Create a VTK/PyVista grid of the stored field.

transform(method[, field, store, process]) Apply field transformation.

unstructured(*args, **kwargs) Generate a field on an unstructured mesh.

vtk_export(filename[, field_select,fieldname]) Export the stored field to vtk.

__call__(pos=None, mesh_type='unstructured', ext_drift=None, chunk_size=None, only_mean=False, return_var=True, post_process=True, store=True)

Generate the kriging field.
The field is saved as self.field and is also returned. The error variance is saved as self.krige_var and is also returned.

Parameters

• pos (list, optional) – the position tuple, containing main direction and transversal directions (x, [y, z])

• mesh_type (str, optional) – ‘structured’ / ‘unstructured’

• ext_drift (numpy.ndarray or None, optional) – the external drift values at the given positions (only for EDK)

• chunk_size (int, optional) – Chunk size to cut down the size of the kriging system to prevent memory errors. Default: None

• only_mean (bool, optional) – Whether to only calculate the mean of the kriging field. Default: False

• return_var (bool, optional) – Whether to return the variance along with the field. Default: True

• post_process (bool, optional) – Whether to apply mean, normalizer and trend to the field. Default: True

• store (str or bool or list, optional) – Whether to store kriging fields (True/False) with default name or with specified names. The default is True for default names [“field”, “krige_var”] or “mean_field” if only_mean=True.

Returns

• field (numpy.ndarray) – the kriged field or mean_field

• krige_var (numpy.ndarray, optional) – the kriging error variance (if return_var is True and only_mean is False)

delete_fields(select=None)
Delete selected fields.

get_mean(post_process=True)
Calculate the estimated mean of the detrended field.

Parameters post_process (bool, optional) – Whether to apply field-mean and normalizer. Default: True

Returns mean – Mean of the Kriging System.

Return type float or None

3.9. gstools.krige 381
Notes

Only not None if the Kriging System has a constant mean. This means, no drift is given and the given field-mean is constant. The result is neglecting a potential given trend.

get_store_config(store, default=None, fld_cnt=None)

Get storage configuration from given selection.

Parameters

- **store** (str or bool or list, optional) – Whether to store fields (True/False) with default names or with specified names. The default is True for default names.
- **default** (str or list, optional) – Default field names. The default is “field”.
- **fld_cnt** (None or int, optional) – Number of fields when using lists. The default is None.

Returns

- **name** (str or list) – Name(s) of field.
- **save** (bool or list) – Whether to save field(s).

mesh(mesh, points='centroids', direction='all', name='field', **kwargs)

Generate a field on a given meshio, ogs5py or PyVista mesh.

Parameters

- **mesh** (meshio.Mesh or ogs5py.MSH or PyVista mesh) – The given mesh
- **points** (str, optional) – The points to evaluate the field at. Either the “centroids” of the mesh cells (calculated as mean of the cell vertices) or the “points” of the given mesh. Default: “centroids”
- **direction** (str or list, optional) – Here you can state which direction should be choosen for lower dimension. For example, if you got a 2D mesh in xz direction, you have to pass “xz”. By default, all directions are used. One can also pass a list of indices. Default: “all”
- **name** (str or list of str, optional) – Name(s) to store the field(s) in the given mesh as point_data or cell_data. If to few names are given, digits will be appended. Default: “field”
- ****kwargs – Keyword arguments forwarded to __call__.

Notes

This will store the field in the given mesh under the given name, if a meshio or PyVista mesh was given.

See:

- meshio: https://github.com/nschloe/meshio
- ogs5py: https://github.com/GeoStat-Framework/ogs5py
- PyVista: https://github.com/pyvista/pyvista

plot(field='field', fig=None, ax=None, **kwargs)

Plot the spatial random field.

Parameters

- **field** (str, optional) – Field that should be plotted. Default: “field”
• **fig** (Figure or None) – Figure to plot the axes on. If None, a new one will be created. Default: None
• **ax** (Axes or None) – Axes to plot on. If None, a new one will be added to the figure. Default: None
• **kwargs** – Forwarded to the plotting routine.

**post_field** *(field, name='field', process=True, save=True)*
Postprocessing field values.

**Parameters**
• **field** *(numpy.ndarray)* – Field values.
• **name** *(str, optional)* – Name to store the field. The default is “field”.
• **process** *(bool, optional)* – Whether to process field to apply mean, normalizer and trend. The default is True.
• **save** *(bool, optional)* – Whether to store the field under the given name. The default is True.

**Returns**
*field* – Processed field values.

**Return type**
numpy.ndarray

**pre_pos** *(pos=None, mesh_type=’unstructured’, info=False)*
Preprocessing positions and mesh_type.

**Parameters**
• **pos** *(iterable)* – the position tuple, containing main direction and transversal directions
• **mesh_type** *(str, optional)* – ‘structured’ / ‘unstructured’ Default: “unstructured”
• **info** *(bool, optional)* – Whether to return information

**Returns**
• **iso_pos** *((d, n), numpy.ndarray)* – Isometrized position tuple.
• **shape** *(tuple)* – Shape of the resulting field.
• **info** *(dict, optional)* – Information about settings.

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

**set_condition** *(cond_pos=None, cond_val=None, ext_drift=None, cond_err=None, fit_normalizer=False, fit_variogram=False)*
Set the conditions for kriging.

This method could also be used to update the kriging setup, when properties were changed. Then you can call it without arguments.

**Parameters**
• **cond_pos** *(list, optional)* – the position tuple of the conditions (x, [y, z]). Default: current.
• **cond_val** *(numpy.ndarray, optional)* – the values of the conditions (nan values will be ignored). Default: current.
• **ext_drift** *(numpy.ndarray or None, optional)* – the external drift values at the given conditions (only for EDK) For multiple external drifts, the first dimension should be the index of the drift term. When passing None, the existing external drift will be used.


- **cond_err** *(str, :class float, list, optional)* – The measurement error at the conditioning points. Either “nugget” to apply the model-nugget, a single value applied to all points or an array with individual values for each point. The measurement error has to be <= nugget. The “exact=True” variant only works with “cond_err='nugget’”. Default: “nugget”

- **fit_normalizer** *(bool, optional)* – Wheater to fit the data-normalizer to the given conditioning data. Default: False

- **fit_variogram** *(bool, optional)* – Wheater to fit the given variogram model to the data. This is done by using isotropy settings of the given model, assuming the sill to be the data variance and with the standard bins provided by the standard_bins routine. Default: False

**set_drift_functions**(drift_functions=None)
Set the drift functions for universal kriging.
  
  Parameters **drift_functions** *(list of callable, str or int)* – Either a list of callable functions, an integer representing the polynomial order of the drift or one of the following strings:
  - ”linear” : regional linear drift (equals order=1)
  - ”quadratic” : regional quadratic drift (equals order=2)

  Raises **ValueError** – If the given drift functions are not callable.

**set_pos**(pos, mesh_type='unstructured', info=False)
Set positions and mesh_type.
  
  Parameters
  - **pos** *(iterable)* – the position tuple, containing main direction and transversal directions
  - **mesh_type** *(str, optional)* – ‘structured’ / ‘unstructured’ Default: “unstructured”
  - **info** *(bool, optional)* – Whether to return information

  Returns **info** – Information about settings.

  Return type **dict**, optional

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

**structured**(args, **kwargs)
Generate a field on a structured mesh.

See __call__

**to_pyvista**(field_select='field', fieldname='field')
Create a VTK/PyVista grid of the stored field.

Parameters
  - **field_select** *(str, optional)* – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”
  - **fieldname** *(str, optional)* – Name of the field in the VTK file. Default: “field”

**transform**(method, field='field', store=True, process=False, **kwargs)
Apply field transformation.

Parameters
  - **method** *(str)* – Method to use. See gtools.transform for available transformations.
• **field** *(str, optional)* – Name of field to be transformed. The default is “field”.

• **store** *(str or bool, optional)* – Whether to store field inplace (True/False) or under a given name. The default is True.

• **process** *(bool, optional)* – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.

• ****kwargs** – Keyword arguments forwarded to selected method.

Raises: **ValueError** – When method is unknown.

Returns: Transformed field.

Return type: *numpy.ndarray*

**unstructured** *(**args, **kwargs)*

Generate a field on an unstructured mesh.

See: **__call__**

**vtk_export** *(filename, field_select='field', fieldname='field')*

Export the stored field to vtk.

Parameters:

• **filename** *(str)* – Filename of the file to be saved, including the path. Note that an ending (.vtr or .vtu) will be added to the name.

• **field_select** *(str, optional)* – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”

• **fieldname** *(str, optional)* – Name of the field in the VTK file. Default: “field”

**property all_fields**

All fields as stacked list.

Type: *list*

**property cond_err**

The measurement errors at the condition points.

Type: *list*

**property cond_ext_drift**

The ext. drift at the conditions.

Type: *numpy.ndarray*

**property cond_mean**

Trend at the conditions.

Type: *numpy.ndarray*

**property cond_no**

The number of the conditions.

Type: *int*

**property cond_pos**

The position tuple of the conditions.

Type: *list*

**property cond_trend**

Trend at the conditions.

Type: *numpy.ndarray*

**property cond_val**

The values of the conditions.

Type: *list*
default_field_names = ['field', 'krige_var', 'mean_field']
    Default field names.
    Type list

property dim
    Dimension of the field.
    Type int

property drift_functions
    The drift functions.
    Type list of callable

property drift_no
    Number of drift values per point.
    Type int

property exact
    Whether the interpolator is exact.
    Type bool

property ext_drift_no
    Number of external drift values per point.
    Type int

property field_names
    Names of present fields.
    Type list

property field_shape
    The shape of the field.
    Type tuple

property has_const_mean
    Whether the field has a constant mean or not.
    Type bool

property int_drift_no
    Number of internal drift values per point.
    Type int

property krige_size
    Size of the kriging system.
    Type int

property latlon
    Whether the field depends on geographical coords.
    Type bool

property mean
    The mean of the field.
    Type float or callable

property mesh_type
    The mesh type of the field.
    Type str

property model
    The covariance model of the field.
Type `CovModel`

**property name**
The name of the class.

Type `str`

**property normalizer**
Normalizer of the field.

Type `Normalizer`

**property pos**
The position tuple of the field.

Type `tuple`

**property pseudo_inv**
Whether pseudo inverse matrix is used.

Type `bool`

**property pseudo_inv_type**
Method selector for pseudo inverse calculation.

Type `str`

**property trend**
The trend of the field.

Type `float` or `callable`

**property unbiased**
Whether the kriging is unbiased or not.

Type `bool`

**property value_type**
Type of the field values (scalar, vector).

Type `str`
**gstools.krige.Oldinary**

```python
class gstools.krige.Oldinary(model, cond_pos, cond_val, normalizer=None, trend=None, exact=False, cond_err='nugget', pseudo_inv=True, pseudo_inv_type='pinv', fit_normalizer=False, fit_variogram=False)
```

**Bases:** `gstools.krige.base.Krige`

Ordinary kriging.

Ordinary kriging is used to interpolate data and estimate a proper mean.

**Parameters**

- `model (CovModel)` – Covariance Model used for kriging.
- `cond_pos (list)` – tuple, containing the given condition positions (x, [y, z])
- `cond_val (numpy.ndarray)` – the values of the conditions (nan values will be ignored)
- `normalizer (None or Normalizer, optional)` – Normalizer to be applied to the input data to gain normality. The default is None.
- `trend (None or float or callable, optional)` – A callable trend function. Should have the signature: f(x, [y, z, . . .]) This is used for detrended kriging, where the trended is subtracted from the conditions before kriging is applied. This can be used for regression kriging, where the trend function is determined by an external regression algorithm. If no normalizer is applied, this behaves equal to ‘mean’. The default is None.
- `exact (bool, optional)` – Whether the interpolator should reproduce the exact input values. If False, `cond_err` is interpreted as measurement error at the condition points and the result will be more smooth. Default: False
- `cond_err (str, :class float or list, optional)` – The measurement error at the condition points. Either “nugget” to apply the model-nugget, a single value applied to all points or an array with individual values for each point. The measurement error has to be <= nugget. The “exact=True” variant only works with “cond_err='nugget'”. Default: “nugget”
- `pseudo_inv (bool, optional)` – Whether the kriging system is solved with the pseudo inverted kriging matrix. If True, this leads to more numerical stability and redundant points are averaged. But it can take more time. Default: True
- `pseudo_inv_type (str or callable, optional)` – Here you can select the algorithm to compute the pseudo-inverse matrix:
  - ”pinv”: use pinv from scipy which uses lstsq
  - ”pinv2”: use pinv2 from scipy which uses SVD
  - ”pinvh”: use pinvh from scipy which uses eigen-values

If you want to use another routine to invert the kriging matrix, you can pass a callable which takes a matrix and returns the inverse. Default: “pinv”

- `fit_normalizer (bool, optional)` – Wheater to fit the data-normalizer to the given conditioning data. Default: False
- `fit_variogram (bool, optional)` – Wheater to fit the given variogram model to the data. This is done by using isotropy settings of the given model, assuming the sill to be the data variance and with the standard bins provided by the `standard_bins` routine. Default: False

**Attributes**

- `all_fields list`: All fields as stacked list.
- `cond_err list`: The measurement errors at the condition points.
cond_ext_drift  numpy.ndarray: The ext. drift at the conditions.
cond_mean  numpy.ndarray: Trend at the conditions.
cond_no  int: The number of the conditions.
cond_pos  list: The position tuple of the conditions.
cond_trend  numpy.ndarray: Trend at the conditions.
cond_val  list: The values of the conditions.
dim  int: Dimension of the field.
drift_functions  list of callable: The drift functions.
drift_no  int: Number of drift values per point.
effect  bool: Whether the interpolator is exact.
ext_drift_no  int: Number of external drift values per point.
field_names  list: Names of present fields.
field_shape  tuple: The shape of the field.
has_const_mean  bool: Whether the field has a constant mean or not.
int_drift_no  int: Number of internal drift values per point.
krige_size  int: Size of the kriging system.
latlon  bool: Whether the field depends on geographical coords.
mean  float or callable: The mean of the field.
mesh_type  str: The mesh type of the field.
model  CovModel: The covariance model of the field.
name  str: The name of the class.
normalizer  Normalizer: Normalizer of the field.
pos  tuple: The position tuple of the field.
pseudo_inv  bool: Whether pseudo inverse matrix is used.
pseudo_inv_type  str: Method selector for pseudo inverse calculation.
trend  float or callable: The trend of the field.
unbiased  bool: Whether the kriging is unbiased or not.
value_type  str: Type of the field values (scalar, vector).

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>call</strong>([pos, mesh_type, ext_drift, ...])</td>
<td>Generate the kriging field.</td>
</tr>
<tr>
<td>delete_fields([select])</td>
<td>Delete selected fields.</td>
</tr>
<tr>
<td>get_mean([post_process])</td>
<td>Calculate the estimated mean of the detrended field.</td>
</tr>
<tr>
<td>get_store_config(store[, default, fld_cnt])</td>
<td>Get storage configuration from given selection.</td>
</tr>
<tr>
<td>mesh(mesh[, points, direction, name])</td>
<td>Generate a field on a given meshio, ogs5py or PyVista mesh.</td>
</tr>
<tr>
<td>plot([field, fig, ax])</td>
<td>Plot the spatial random field.</td>
</tr>
<tr>
<td>post_field([field[, name, process, save]])</td>
<td>Postprocessing field values.</td>
</tr>
<tr>
<td>pre_pos([pos, mesh_type, info])</td>
<td>Preprocessing positions and mesh_type.</td>
</tr>
<tr>
<td>set_condition([cond_pos, cond_val, ...])</td>
<td>Set the conditions for kriging.</td>
</tr>
</tbody>
</table>

continues on next page
Table 48 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>set_drift_functions([drift_functions])</td>
<td>Set the drift functions for universal kriging.</td>
</tr>
<tr>
<td>set_pos(pos[, mesh_type, info])</td>
<td>Set positions and mesh_type.</td>
</tr>
<tr>
<td>structured(*args, **kwargs)</td>
<td>Generate a field on a structured mesh.</td>
</tr>
<tr>
<td>to_pyvista([field_select,fieldname])</td>
<td>Create a VTK/PyVista grid of the stored field.</td>
</tr>
<tr>
<td>transform(method[, field, store, process])</td>
<td>Apply field transformation.</td>
</tr>
<tr>
<td>unstructured(*args, **kwargs)</td>
<td>Generate a field on an unstructured mesh.</td>
</tr>
<tr>
<td>vtk_export(filename[, field_select, field-name])</td>
<td>Export the stored field to vtk.</td>
</tr>
</tbody>
</table>

__call__ (pos=None, mesh_type='unstructured', ext_drift=None, chunk_size=None, only_mean=False, return_var=True, post_process=True, store=True)

Generate the kriging field.

The field is saved as self.field and is also returned. The error variance is saved as self.krige_var and is also returned.

Parameters

- **pos** (list, optional) – the position tuple, containing main direction and transversal directions (x, [y, z])
- **mesh_type** (str, optional) – ‘structured’ / ‘unstructured’
- **ext_drift** (numpy.ndarray or None, optional) – the external drift values at the given positions (only for EDK)
- **chunk_size** (int, optional) – Chunk size to cut down the size of the kriging system to prevent memory errors. Default: None
- **only_mean** (bool, optional) – Whether to only calculate the mean of the kriging field. Default: False
- **return_var** (bool, optional) – Whether to return the variance along with the field. Default: True
- **post_process** (bool, optional) – Whether to apply mean, normalizer and trend to the field. Default: True
- **store** (str or bool or list, optional) – Whether to store kriging fields (True/False) with default name or with specified names. The default is True for default names [“field”, “krige_var”] or “mean_field” if only_mean=True.

Returns

- **field** (numpy.ndarray) – the kriged field or mean_field
- **krige_var** (numpy.ndarray, optional) – the kriging error variance (if return_var is True and only_mean is False)

delete_fields(select=None)
Delete selected fields.

get_mean (post_process=True)
Calculate the estimated mean of the detrended field.

Parameters **post_process** (bool, optional) – Whether to apply field-mean and normalizer. Default: True

Returns **mean** – Mean of the Kriging System.

Return type float or None

Notes
Only not None if the Kriging System has a constant mean. This means, no drift is given and the given field-mean is constant. The result is neglecting a potential given trend.

get_store_config (store, default=None, fld_cnt=None)
Get storage configuration from given selection.

Parameters

- **store** (str or bool or list, optional) – Whether to store fields (True/False) with default names or with specified names. The default is True for default names.
- **default** (str or list, optional) – Default field names. The default is “field”.
- **fld_cnt** (None or int, optional) – Number of fields when using lists. The default is None.

Returns

- **name** (str or list) – Name(s) of field.
- **save** (bool or list) – Whether to save field(s).

mesh (mesh, points='centroids', direction='all', name='field', **kwargs)
Generate a field on a given meshio, ogs5py or PyVista mesh.

Parameters

- **mesh** (meshio.Mesh or ogs5py.MSH or PyVista mesh) – The given mesh
- **points** (str, optional) – The points to evaluate the field at. Either the “centroids” of the mesh cells (calculated as mean of the cell vertices) or the “points” of the given mesh. Default: “centroids”
- **direction** (str or list, optional) – Here you can state which direction should be choosen for lower dimension. For example, if you got a 2D mesh in xz direction, you have to pass “xz”. By default, all directions are used. One can also pass a list of indices. Default: “all”
- **name** (str or list of str, optional) – Name(s) to store the field(s) in the given mesh as point_data or cell_data. If to few names are given, digits will be appended. Default: “field”
- ****kwargs – Keyword arguments forwarded to __call__.

Notes

This will store the field in the given mesh under the given name, if a meshio or PyVista mesh was given.

See:

- meshio: https://github.com/nschloe/meshio
- ogs5py: https://github.com/GeoStat-Framework/ogs5py
- PyVista: https://github.com/pyvista/pyvista

plot (field='field', fig=None, ax=None, **kwargs)
Plot the spatial random field.

Parameters

- **field** (str, optional) – Field that should be plotted. Default: “field”
- **fig** (Figure or None) – Figure to plot the axes on. If None, a new one will be created. Default: None
• **ax** *(Axes or None)* – Axes to plot on. If None, a new one will be added to the figure.
  Default: None

• **kwargs** – Forwarded to the plotting routine.

`post_field(field, name='field', process=True, save=True)`
Postprocessing field values.

**Parameters**

• **field** *(numpy.ndarray)* – Field values.

• **name** *(str, optional)* – Name to store the field. The default is “field”.

• **process** *(bool, optional)* – Whether to process field to apply mean, normalizer and trend. The default is True.

• **save** *(bool, optional)* – Whether to store the field under the given name. The default is True.

**Returns**

field – Processed field values.

**Return type**

numpy.ndarray

`pre_pos(pos=None, mesh_type='unstructured', info=False)`
Preprocessing positions and mesh_type.

**Parameters**

• **pos** *(iterable)* – the position tuple, containing main direction and transversal directions

• **mesh_type** *(str, optional)* – ‘structured’ / ‘unstructured’ Default: “unstructured”

• **info** *(bool, optional)* – Whether to return information

**Returns**

• **iso_pos** *((d, n), numpy.ndarray)* – Isometrized position tuple.

• **shape** *(tuple)* – Shape of the resulting field.

• **info** *(dict, optional)* – Information about settings.

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

`set_condition(cond_pos=None, cond_val=None, ext_drift=None, cond_err=None, fit_normalizer=False, fit_variogram=False)`
Set the conditions for kriging.

This method could also be used to update the kriging setup, when properties were changed. Then you can call it without arguments.

**Parameters**

• **cond_pos** *(list, optional)* – the position tuple of the conditions (x, [y, z]). Default: current.

• **cond_val** *(numpy.ndarray, optional)* – the values of the conditions (nan values will be ignored). Default: current.

• **ext_drift** *(numpy.ndarray or None, optional)* – the external drift values at the given conditions (only for EDK) For multiple external drifts, the first dimension should be the index of the drift term. When passing None, the extisting external drift will be used.
 GeoStatTools Documentation, Release 1.3.4

• **cond_err** *(str, \class float, list, optional)* – The measurement error at the conditioning points. Either “nugget” to apply the model-nugget, a single value applied to all points or an array with individual values for each point. The measurement error has to be <= nugget. The “exact=True” variant only works with “cond_err=’nugget’”. Default: ‘nugget’

• **fit_normalizer** *(bool, optional)* – Whether to fit the data-normalizer to the given conditioning data. Default: False

• **fit_variogram** *(bool, optional)* – Whether to fit the given variogram model to the data. This is done by using isotropy settings of the given model, assuming the sill to be the data variance and with the standard bins provided by the \class standard_bins routine. Default: False

set_drift_functions *(drift_functions=\text{None})*
Set the drift functions for universal kriging.

Parameters

- **drift_functions** *(\text{list of callable, str or int})* – Either a list of callable functions, an integer representing the polynomial order of the drift or one of the following strings:
  - ”linear” : regional linear drift (equals order=1)
  - ”quadratic” : regional quadratic drift (equals order=2)

 Raises **ValueError** – If the given drift functions are not callable.

set_pos *(pos, mesh_type=’unstructured’, info=False)*
Set positions and mesh_type.

Parameters

- **pos** *(iterable)* – the position tuple, containing main direction and transversal directions
- **mesh_type** *(str, optional)* – ‘structured’ / ‘unstructured’ Default: “unstructured”
- **info** *(bool, optional)* – Whether to return information

Returns **info** – Information about settings.

Return type **dict**, optional

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

structured(*args, **kwargs)*
Generate a field on a structured mesh.

See **\class call**

to_pyvista *(field_select=’field’, fieldname=’field’)*
Create a VTK/PyVista grid of the stored field.

Parameters

- **field_select** *(str, optional)* – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”
- **fieldname** *(str, optional)* – Name of the field in the VTK file. Default: “field”

transform *(method, field=’field’, store=True, process=False, **kwargs)*
Apply field transformation.

Parameters

- **method** *(str)* – Method to use. See \class gtools.transform for available transformations.
• **field** *(str, optional)* – Name of field to be transformed. The default is “field”.

• **store** *(str or bool, optional)* – Whether to store field inplace (True/False) or under a given name. The default is True.

• **process** *(bool, optional)* – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.

• ****kwargs** – Keyword arguments forwarded to selected method.

**Raises** *ValueError* – When method is unknown.

**Returns** *Transformed field.*

**Return type** *numpy.ndarray*

`unstructured(*args, **kwargs) `  
Generate a field on an unstructured mesh.

See __call__

`vtk_export(filename, field_select='field', fieldname='field') `  
Export the stored field to vtk.

**Parameters**

• **filename** *(str)* – Filename of the file to be saved, including the path. Note that an ending (.vtr or .vtu) will be added to the name.

• **field_select** *(str, optional)* – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”

• **fieldname** *(str, optional)* – Name of the field in the VTK file. Default: “field”

**property all_fields**  
All fields as stacked list.

**Type** *list*

**property cond_err**  
The measurement errors at the condition points.

**Type** *list*

**property cond_ext_drift**  
The ext. drift at the conditions.

**Type** *numpy.ndarray*

**property cond_mean**  
Trend at the conditions.

**Type** *numpy.ndarray*

**property cond_no**  
The number of the conditions.

**Type** *int*

**property cond_pos**  
The position tuple of the conditions.

**Type** *list*

**property cond_trend**  
Trend at the conditions.

**Type** *numpy.ndarray*

**property cond_val**  
The values of the conditions.

**Type** *list*
default_field_names = ['field', 'krige_var', 'mean_field']
    Default field names.
    Type list

property dim
    Dimension of the field.
    Type int

property drift_functions
    The drift functions.
    Type list of callable

property drift_no
    Number of drift values per point.
    Type int

property exact
    Whether the interpolator is exact.
    Type bool

property ext_drift_no
    Number of external drift values per point.
    Type int

property field_names
    Names of present fields.
    Type list

property field_shape
    The shape of the field.
    Type tuple

property has_const_mean
    Whether the field has a constant mean or not.
    Type bool

property int_drift_no
    Number of internal drift values per point.
    Type int

property krige_size
    Size of the kriging system.
    Type int

property latlon
    Whether the field depends on geographical coords.
    Type bool

property mean
    The mean of the field.
    Type float or callable

property mesh_type
    The mesh type of the field.
    Type str

property model
    The covariance model of the field.
Type `CovModel`

**property name**
The name of the class.

Type `str`

**property normalizer**
Normalizer of the field.

Type `Normalizer`

**property pos**
The position tuple of the field.

Type `tuple`

**property pseudo_inv**
Whether pseudo inverse matrix is used.

Type `bool`

**property pseudo_inv_type**
Method selector for pseudo inverse calculation.

Type `str`

**property trend**
The trend of the field.

Type `float` or `callable`

**property unbiased**
Whether the kriging is unbiased or not.

Type `bool`

**property value_type**
Type of the field values (scalar, vector).

Type `str`
**gstools.krige.Universal**

**class gstools.krige.Universal**

```
model, cond_pos, cond_val, drift_functions, normalizer=None, trend=None, exact=False, cond_err='nugget',
pseudo_inv=True, pseudo_inv_type='pinv',
fit_normalizer=False, fit_variogram=False)
```

**Bases:** gstools.krige.base.Krige

**Universal kriging.**

Universal kriging is used to interpolate given data with a variable mean, that is determined by a functional drift.

This estimator is set to be unbiased by default. This means, that the weights in the kriging equation sum up to 1. Consequently no constant function needs to be given for a constant drift, since the unbiased condition is applied to all given drift functions.

**Parameters**

- **model** (*CovModel*) – Covariance Model used for kriging.
- **cond_pos** (*list*) – tuple, containing the given condition positions (x, [y, z])
- **cond_val** (*numpy.ndarray*) – the values of the conditions (nan values will be ignored)
- **drift_functions** (*list of callable, str or int*) – Either a list of callable functions, an integer representing the polynomial order of the drift or one of the following strings:
  - "linear" : regional linear drift (equals order=1)
  - "quadratic" : regional quadratic drift (equals order=2)
- **normalizer** (*None or Normalizer*, optional) – Normalizer to be applied to the input data to gain normality. The default is None.
- **trend** (*None or float or callable*, optional) – A callable trend function. Should have the signature: f(x, [y, z, ...]) This is used for detrended kriging, where the trended is subtracted from the conditions before kriging is applied. This can be used for regression kriging, where the trend function is determined by an external regression algorithm. If no normalizer is applied, this behaves equal to ‘mean’. The default is None.
- **exact** (*bool*, optional) – Whether the interpolator should reproduce the exact input values. If False, **cond_err** is interpreted as measurement error at the conditioning points and the result will be more smooth. Default: False
- **cond_err** (*str, :class float or list*, optional) – The measurement error at the conditioning points. Either “nugget” to apply the model-nugget, a single value applied to all points or an array with individual values for each point. The measurement error has to be <= nugget. The “exact=True” variant only works with “cond_err='nugget'”. Default: “nugget”
- **pseudo_inv** (*bool*, optional) – Whether the kriging system is solved with the pseudo inverted kriging matrix. If True, this leads to more numerical stability and redundant points are averaged. But it can take more time. Default: True
- **pseudo_inv_type** (*str or callable*, optional) – Here you can select the algorithm to compute the pseudo-inverse matrix:
  - "pinv": use **pinv** from scipy which uses lstsq
  - "pinv2": use **pinv2** from scipy which uses SVD
  - "pinvh": use **pinvh** from scipy which uses eigen-values

If you want to use another routine to invert the kriging matrix, you can pass a callable which takes a matrix and returns the inverse. Default: “pinv”
• **fit_normalizer**(bool, optional) – Wheater to fit the data-normalizer to the given conditioning data. Default: False

• **fit_variogram**(bool, optional) – Wheater to fit the given variogram model to the data. This is done by using isotropy settings of the given model, assuming the sill to be the data variance and with the standard bins provided by the `standard_bins` routine. Default: False

**Attributes**

- **all_fields** list: All fields as stacked list.
- **cond_err** list: The measurement errors at the condition points.
- **cond_ext_drift** `numpy.ndarray`: The ext. drift at the conditions.
- **cond_mean** `numpy.ndarray`: Trend at the conditions.
- **cond_no** int: The number of the conditions.
- **cond_pos** list: The position tuple of the conditions.
- **cond_trend** `numpy.ndarray`: Trend at the conditions.
- **cond_val** list: The values of the conditions.
- **dim** int: Dimension of the field.
- **drift_functions** list of `callable`: The drift functions.
- **drift_no** int: Number of drift values per point.
- **exact** bool: Whether the interpolator is exact.
- **ext_drift_no** int: Number of external drift values per point.
- **field_names** list: Names of present fields.
- **field_shape** tuple: The shape of the field.
- **has_const_mean** bool: Whether the field has a constant mean or not.
- **int_drift_no** int: Number of internal drift values per point.
- **krige_size** int: Size of the kriging system.
- **latlon** bool: Whether the field depends on geographical coords.
- **mean** float or `callable`: The mean of the field.
- **mesh_type** str: The mesh type of the field.
- **model** `CovModel`: The covariance model of the field.
- **name** str: The name of the class.
- **normalizer** `Normalizer`: Normalizer of the field.
- **pos** tuple: The position tuple of the field.
- **pseudo_inv** bool: Whether pseudo inverse matrix is used.
- **pseudo_inv_type** str: Method selector for pseudo inverse calculation.
- **trend** float or `callable`: The trend of the field.
- **unbiased** bool: Whether the kriging is unbiased or not.
- **value_type** str: Type of the field values (scalar, vector).
Methods

__call__(pos, mesh_type, ext_drift, ...) Generate the kriging field.

delete_fields(select) Delete selected fields.

get_mean(post_process) Calculate the estimated mean of the detrended field.

get_store_config(store[, default, fld_cnt]) Get storage configuration from given selection.

mesh(mesh[, points, direction, name]) Generate a field on a given meshio, ogs5py or PyVista mesh.

plot(field, fig, ax) Plot the spatial random field.

post_field(field[, name, process, save]) Postprocessing field values.

pre_pos(pos[, mesh_type, info]) Preprocessing positions and mesh_type.

set_condition(cond_pos[, cond_val, ...]) Set the conditions for kriging.

set_drift_functions(drift_functions) Set the drift functions for universal kriging.

set_pos(pos[, mesh_type, info]) Set positions and mesh_type.

structured(*args, **kwargs) Generate a field on a structured mesh.

to_pyvista(field_select[, fieldname]) Create a VTK/PyVista grid of the stored field.

transform(method[, field, store, process]) Apply field transformation.

unstructured(*args, **kwargs) Generate a field on an unstructured mesh.

vtk_export(filename[, field_select, fieldname]) Export the stored field to vtk.

__call__(pos=None, mesh_type='unstructured', ext_drift=None, chunk_size=None, only_mean=False, return_var=True, post_process=True, store=True)

Generate the kriging field.

The field is saved as self.field and is also returned. The error variance is saved as self.krige_var and is also returned.

Parameters

- **pos** (list, optional) – the position tuple, containing main direction and transversal directions (x, [y, z])
- **mesh_type** (str, optional) – ‘structured’ / ‘unstructured’
- **ext_drift** (numpy.ndarray or None, optional) – the external drift values at the given positions (only for EDK)
- **chunk_size** (int, optional) – Chunk size to cut down the size of the kriging system to prevent memory errors. Default: None
- **only_mean** (bool, optional) – Whether to only calculate the mean of the kriging field. Default: False
- **return_var** (bool, optional) – Whether to return the variance along with the field. Default: True
- **post_process** (bool, optional) – Whether to apply mean, normalizer and trend to the field. Default: True
- **store** (str or bool or list, optional) – Whether to store kriging fields (True/False) with default name or with specified names. The default is True for default names [“field”, “krige_var”] or “mean_field” if only_mean=True.

Returns

- **field** (numpy.ndarray) – the kriged field or mean_field
- **krige_var** (numpy.ndarray, optional) – the kriging error variance (if return_var is True and only_mean is False)

delete_fields(select=None)

Delete selected fields.
get_mean\((post\_process=True)\)
Calculate the estimated mean of the detrended field.

**Parameters**
post_process\((bool, optional)\) – Whether to apply field-mean and normalizer. Default: True

**Returns**
mean – Mean of the Kriging System.

**Return type**
float or None

**Notes**
Only not None if the Kriging System has a constant mean. This means, no drift is given and the given field-mean is constant. The result is neglecting a potential given trend.

get_store_config\((store, default=None, fld\_cnt=None)\)
Get storage configuration from given selection.

**Parameters**
- store\((str or bool or list, optional)\) – Whether to store fields (True/False) with default names or with specified names. The default is True for default names.
- default\((str or list, optional)\) – Default field names. The default is “field”.
- fld_cnt\((None or int, optional)\) – Number of fields when using lists. The default is None.

**Returns**
- name\((str or list)\) – Name(s) of field.
- save\((bool or list)\) – Whether to save field(s).

mesh\((mesh, points='centroids', direction='all', name='field', **kwargs)\)
Generate a field on a given meshio, ogs5py or PyVista mesh.

**Parameters**
- mesh\((meshio.Mesh or ogs5py.MSH or PyVista mesh)\) – The given mesh
- points\((str, optional)\) – The points to evaluate the field at. Either the “centroids” of the mesh cells (calculated as mean of the cell vertices) or the “points” of the given mesh. Default: “centroids”
- direction\((str or list, optional)\) – Here you can state which direction should be chosen for lower dimension. For example, if you got a 2D mesh in xz direction, you have to pass “xz”. By default, all directions are used. One can also pass a list of indices. Default: “all”
- name\((str or list of str, optional)\) – Name(s) to store the field(s) in the given mesh as point_data or cell_data. If to few names are given, digits will be appended. Default: “field”
- **kwargs – Keyword arguments forwarded to __call__.

**Notes**
This will store the field in the given mesh under the given name, if a meshio or PyVista mesh was given.

**See:**
- meshio: https://github.com/nschloe/meshio
- ogs5py: https://github.com/GeoStat-Framework/ogs5py
• PyVista: https://github.com/pyvista/pyvista

plot (field='field', fig=None, ax=None, **kwargs)
Plot the spatial random field.

Parameters

• field (str, optional) – Field that should be plotted. Default: “field”
• fig (Figure or None) – Figure to plot the axes on. If None, a new one will be created. Default: None
• ax (Axes or None) – Axes to plot on. If None, a new one will be added to the figure. Default: None
• **kwargs – Forwarded to the plotting routine.

post_field (field, name='field', process=True, save=True)
Postprocessing field values.

Parameters

• field (numpy.ndarray) – Field values.
• name (str, optional) – Name. to store the field. The default is “field”.
• process (bool, optional) – Whether to process field to apply mean, normalizer and trend. The default is True.
• save (bool, optional) – Whether to store the field under the given name. The default is True.

Returns field – Processed field values.

Return type numpy.ndarray

pre_pos (pos=None, mesh_type='unstructured', info=False)
Preprocessing positions and mesh_type.

Parameters

• pos (iterable) – the position tuple, containing main direction and transversal directions
• mesh_type (str, optional) – ‘structured’ / ‘unstructured’ Default: “unstructured”
• info (bool, optional) – Whether to return information

Returns

• iso_pos ((d, n), numpy.ndarray) – Isometrized position tuple.
• shape (tuple) – Shape of the resulting field.
• info (dict, optional) – Information about settings.

Warning: When setting a new position tuple that differs from the present one, all stored fields will be deleted.

set_condition (cond_pos=None, cond_val=None, ext_drift=None, cond_err=None, fit_normalizer=False, fit_variogram=False)
Set the conditions for kriging.

This method could also be used to update the kriging setup, when properties were changed. Then you can call it without arguments.

Parameters
• **cond_pos** (*list*, optional) – the position tuple of the conditions (*x*, [*y*, *z*]). Default: current.

• **cond_val** (*numpy.ndarray*, optional) – the values of the conditions (nan values will be ignored). Default: current.

• **ext_drift** (*numpy.ndarray* or *None*, optional) – the external drift values at the given conditions (only for EDK) For multiple external drifts, the first dimension should be the index of the drift term. When passing *None*, the existing external drift will be used.

• **cond_err** (*str*, *class float, list*, optional) – The measurement error at the conditioning points. Either “nugget” to apply the model-nugget, a single value applied to all points or an array with individual values for each point. The measurement error has to be <= nugget. The “exact=True” variant only works with “cond_err=’nugget’”. Default: “nugget”

• **fit_normalizer** (*bool*, optional) – Wheater to fit the data-normalizer to the given conditioning data. Default: False

• **fit_variogram** (*bool*, optional) – Wheater to fit the given variogram model to the data. This is done by using isotropy settings of the given model, assuming the sill to be the data variance and with the standard bins provided by the *standard_bins* routine. Default: False

**set_drift_functions** (*drift_functions=None*)
Set the drift functions for universal kriging.

Parameters
* **drift_functions** (*list of callable, str or int*) – Either a list of callable functions, an integer representing the polynomial order of the drift or one of the following strings:
  • ”linear” : regional linear drift (equals order=1)
  • ”quadratic” : regional quadratic drift (equals order=2)

Raises **ValueError** – If the given drift functions are not callable.

**set_pos** (*pos, mesh_type=’unstructured’, info=False*)
Set positions and mesh_type.

Parameters
• **pos** (*iterable*) – the position tuple, containing main direction and transversal directions

• **mesh_type** (*str*, optional) – ‘structured’ / ‘unstructured’ Default: “unstructured”

• **info** (*bool*, optional) – Whether to return information

Returns **info** – Information about settings.

Return type *dict*, optional

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

**structured**(*args, **kwargs*)
Generate a field on a structured mesh.

See **__call__**

**to_pyvista**(*field_select=’field’,fieldname=’field’*)
Create a VTK/PyVista grid of the stored field.

Parameters
• **field_select** (*str*, optional) – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”

• **fieldname** (*str*, optional) – Name of the field in the VTK file. Default: “field”

**transform** (*method*, **field**=’field’, **store**=True, **process**=False, **kwargs**)
Applies field transformation.

**Parameters**

• **method** (*str*) – Method to use. See **gstools.transform** for available transformations.

• **field** (*str*, optional) – Name of field to be transformed. The default is “field”.

• **store** (*str* or *bool*, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.

• **process** (*bool*, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.

• **kwargs** – Keyword arguments forwarded to selected method.

**Raises** **ValueError** – When method is unknown.

**Returns** Transformed field.

**Return type** *numpy.ndarray*

**unstructured** (*args*, **kwargs**)
Generate a field on an unstructured mesh.

See **__call__**

**vtk_export** (*filename*, **field_select**=’field’, **fieldname**=’field’)
Export the stored field to vtk.

**Parameters**

• **filename** (*str*) – Filename of the file to be saved, including the path. Note that an ending (.vtr or .vtu) will be added to the name.

• **field_select** (*str*, optional) – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”

• **fieldname** (*str*, optional) – Name of the field in the VTK file. Default: “field”

**property all_fields**
All fields as stacked list.

**Type** *list*

**property cond_err**
The measurement errors at the condition points.

**Type** *list*

**property cond_ext_drift**
The ext. drift at the conditions.

**Type** *numpy.ndarray*

**property cond_mean**
Trend at the conditions.

**Type** *numpy.ndarray*

**property cond_no**
The number of the conditions.

**Type** *int*
property cond_pos
   The position tuple of the conditions.
   Type list

property cond_trend
   Trend at the conditions.
   Type numpy.ndarray

property cond_val
   The values of the conditions.
   Type list

default_field_names = ['field', 'krige_var', 'mean_field']
   Default field names.
   Type list

property dim
   Dimension of the field.
   Type int

property drift_functions
   The drift functions.
   Type list of callable

property drift_no
   Number of drift values per point.
   Type int

property exact
   Whether the interpolator is exact.
   Type bool

property ext_drift_no
   Number of external drift values per point.
   Type int

property field_names
   Names of present fields.
   Type list

property field_shape
   The shape of the field.
   Type tuple

property has_const_mean
   Whether the field has a constant mean or not.
   Type bool

property int_drift_no
   Number of internal drift values per point.
   Type int

property krige_size
   Size of the kriging system.
   Type int

property latlon
   Whether the field depends on geographical coords.
**Type** `bool`

**property mean**
The mean of the field.

**Type** `float` or `callable`

**property mesh_type**
The mesh type of the field.

**Type** `str`

**property model**
The covariance model of the field.

**Type** `CovModel`

**property name**
The name of the class.

**Type** `str`

**property normalizer**
Normalizer of the field.

**Type** `Normalizer`

**property pos**
The position tuple of the field.

**Type** `tuple`

**property pseudo_inv**
Whether pseudo inverse matrix is used.

**Type** `bool`

**property pseudo_inv_type**
Method selector for pseudo inverse calculation.

**Type** `str`

**property trend**
The trend of the field.

**Type** `float` or `callable`

**property unbiased**
Whether the kriging is unbiased or not.

**Type** `bool`

**property value_type**
Type of the field values (scalar, vector).

**Type** `str`
class gstools.krige.ExtDrift(model, cond_pos, cond_val, ext_drift, normalizer=None, trend=None, exact=False, cond_err='nugget', pseudo_inv=True, pseudo_inv_type='pinv', fit_normalizer=False, fit_variogram=False)

Bases: gstools.krige.base.Krige

External drift kriging (EDK).

External drift kriging is used to interpolate given data with a variable mean, that is determined by an external drift.

This estimator is set to be unbiased by default. This means, that the weights in the kriging equation sum up to 1. Consequently no constant external drift needs to be given to estimate a proper mean.

Parameters

- **model** (*CovModel*) – Covariance Model used for kriging.
- **cond_pos** (*list*) – tuple, containing the given condition positions (x, [y, z])
- **cond_val** (*numpy.ndarray*) – the values of the conditions (nan values will be ignored)
- **ext_drift** (*numpy.ndarray*) – the external drift values at the given condition positions.
- **normalizer** (*None or Normalizer*, optional) – Normalizer to be applied to the input data to gain normality. The default is None.
- **trend** (*None or float or callable*, optional) – A callable trend function. Should have the signature: f(x, [y, z, ...]) This is used for detrended kriging, where the trended is subtracted from the conditions before kriging is applied. This can be used for regression kriging, where the trend function is determined by an external regression algorithm. If no normalizer is applied, this behaves equal to ‘mean’. The default is None.
- **exact** (*bool*, optional) – Whether the interpolator should reproduce the exact input values. If False, cond_err is interpreted as measurement error at the conditioning points and the result will be more smooth. Default: False
- **cond_err** (*str, :class float or list*, optional) – The measurement error at the conditioning points. Either “nugget” to apply the model-nugget, a single value applied to all points or an array with individual values for each point. The measurement error has to be <= nugget. The “exact=True” variant only works with “cond_err='nugget'”. Default: “nugget”
- **pseudo_inv** (*bool*, optional) – Whether the kriging system is solved with the pseudo inverted kriging matrix. If True, this leads to more numerical stability and redundant points are averaged. But it can take more time. Default: True
- **pseudo_inv_type** (*str or callable*, optional) – Here you can select the algorithm to compute the pseudo-inverse matrix:
  - ”pinv”: use pinv from scipy which uses lstsq
  - ”pinv2”: use pinv2 from scipy which uses SVD
  - ”pinvh”: use pinvh from scipy which uses eigen-values

If you want to use another routine to invert the kriging matrix, you can pass a callable which takes a matrix and returns the inverse. Default: “pinv”
- **fit_normalizer** (*bool*, optional) – Wheater to fit the data-normalizer to the given conditioning data. Default: False
- **fit_variogram** (*bool*, optional) – Wheater to fit the given variogram model to the data. This is done by using isotropy settings of the given model, assuming the sill to be
the data variance and with the standard bins provided by the `standard_bins` routine. Default: False

Attributes

- `all_fields` list: All fields as stacked list.
- `cond_err` list: The measurement errors at the condition points.
- `cond_ext_drift` numpy.ndarray: The ext. drift at the conditions.
- `cond_mean` numpy.ndarray: Trend at the conditions.
- `cond_no` int: The number of the conditions.
- `cond_pos` list: The position tuple of the conditions.
- `cond_trend` numpy.ndarray: Trend at the conditions.
- `cond_val` list: The values of the conditions.
- `dim` int: Dimension of the field.
- `drift_functions` list of callable: The drift functions.
- `drift_no` int: Number of drift values per point.
- `exact` bool: Whether the interpolator is exact.
- `ext_drift_no` int: Number of external drift values per point.
- `field_names` list: Names of present fields.
- `field_shape` tuple: The shape of the field.
- `has_const_mean` bool: Whether the field has a constant mean or not.
- `int_drift_no` int: Number of internal drift values per point.
- `krige_size` int: Size of the kriging system.
- `latlon` bool: Whether the field depends on geographical coords.
- `mean` float or callable: The mean of the field.
- `mesh_type` str: The mesh type of the field.
- `model` CovModel: The covariance model of the field.
- `name` str: The name of the class.
- `normalizer` Normalizer: Normalizer of the field.
- `pos` tuple: The position tuple of the field.
- `pseudo_inv` bool: Whether pseudo inverse matrix is used.
- `pseudo_inv_type` str: Method selector for pseudo inverse calculation.
- `trend` float or callable: The trend of the field.
- `unbiased` bool: Whether the kriging is unbiased or not.
- `value_type` str: Type of the field values (scalar, vector).
Methods

__call__((pos, mesh_type, ext_drift, ...))  Generate the kriging field.

delete_fields([select])  Delete selected fields.

get_mean([post_process])  Calculate the estimated mean of the detrended field.

get_store_config(store[, default, fld_cnt])  Get storage configuration from given selection.

mesh([mesh[, points, direction, name]])  Generate a field on a given meshio, ogs5py or PyVista mesh.

plot([field, fig, ax])  Plot the spatial random field.

post_field([field[, name, process, save]])  Postprocessing field values.

pre_pos([pos, mesh_type, info])  Preprocessing positions and mesh_type.

set_condition([cond_pos, cond_val, ...])  Set the conditions for kriging.

set_drift_functions([drift_functions])  Set the drift functions for universal kriging.

set_pos([pos[, mesh_type, info]])  Set positions and mesh_type.

structured(*args, **kwargs)  Generate a field on a structured mesh.

to_pyvista([field_select, fieldname])  Create a VTK/PyVista grid of the stored field.

transform([method[, field, store, process]])  Apply field transformation.

unstructured(*args, **kwargs)  Generate a field on an unstructured mesh.

vtk_export(filename[, field_select, fieldname])  Export the stored field to vtk.

__call__((pos=None, mesh_type='unstructured', ext_drift=None, chunk_size=None, only_mean=False, return_var=True, post_process=True, store=True))  Generate the kriging field.

The field is saved as self.field and is also returned. The error variance is saved as self.krige_var and is also returned.

Parameters

- pos (list, optional) – the position tuple, containing main direction and transversal directions (x, [y, z])
- mesh_type (str, optional) – ‘structured’ / ‘unstructured’
- ext_drift (numpy.ndarray or None, optional) – the external drift values at the given positions (only for EDK)
- chunk_size (int, optional) – Chunk size to cut down the size of the kriging system to prevent memory errors. Default: None
- only_mean (bool, optional) – Whether to only calculate the mean of the kriging field. Default: False
- return_var (bool, optional) – Whether to return the variance along with the field. Default: True
- post_process (bool, optional) – Whether to apply mean, normalizer and trend to the field. Default: True
- store (str or bool or list, optional) – Whether to store kriging fields (True/False) with default name or with specified names. The default is True for default names [“field”, “krige_var”] or “mean_field” if only_mean=True.

Returns

- field (numpy.ndarray) – the kriged field or mean_field
- krige_var (numpy.ndarray, optional) – the kriging error variance (if return_var is True and only_mean is False)

delete_fields([select=None])  Delete selected fields.
**get_mean** (*post_process=True*)

Calculate the estimated mean of the detrended field.

**Parameters**

- **post_process** (*bool, optional*) – Whether to apply field-mean and normalizer. Default: *True*

**Returns**

- **mean** – Mean of the Kriging System.

**Return type** *float or None*

**Notes**

Only not *None* if the Kriging System has a constant mean. This means, no drift is given and the given field-mean is constant. The result is neglecting a potential given trend.

**get_store_config** (*store, default=None, fld_cnt=None*)

Get storage configuration from given selection.

**Parameters**

- **store** (*str or bool or list, optional*) – Whether to store fields (True/False) with default names or with specified names. The default is *True* for default names.
- **default** (*str or list, optional*) – Default field names. The default is “field”.
- **fld_cnt** (*None or int, optional*) – Number of fields when using lists. The default is *None*.

**Returns**

- **name** (*str or list*) – Name(s) of field.
- **save** (*bool or list*) – Whether to save field(s).

**mesh** (*mesh, points='centroids', direction='all', name='field', **kwargs*)

Generate a field on a given meshio, ogs5py or PyVista mesh.

**Parameters**

- **mesh** (*meshio.Mesh or ogs5py.MSH or PyVista mesh*) – The given mesh
- **points** (*str, optional*) – The points to evaluate the field at. Either the “centroids” of the mesh cells (calculated as mean of the cell vertices) or the “points” of the given mesh. Default: “centroids”
- **direction** (*str or list, optional*) – Here you can state which direction should be chosen for lower dimension. For example, if you got a 2D mesh in xz direction, you have to pass “xz”. By default, all directions are used. One can also pass a list of indices. Default: “all”
- **name** (*str or list of str, optional*) – Name(s) to store the field(s) in the given mesh as point_data or cell_data. If to few names are given, digits will be appended. Default: “field”
- ****kwargs – Keyword arguments forwarded to __call__.

**Notes**

This will store the field in the given mesh under the given name, if a meshio or PyVista mesh was given.

**See:**

- **meshio**: [https://github.com/nschloe/meshio](https://github.com/nschloe/meshio)
- **ogs5py**: [https://github.com/GeoStat-Framework/ogs5py](https://github.com/GeoStat-Framework/ogs5py)
**GeoStatTools Documentation, Release 1.3.4**

- PyVista: https://github.com/pyvista/pyvista

```python
plot(field='field', fig=None, ax=None, **kwargs)
```
Plot the spatial random field.

**Parameters**

- **field** (`str`, optional) – Field that should be plotted. Default: “field”
- **fig** (`Figure` or `None`) – Figure to plot the axes on. If `None`, a new one will be created. Default: `None`
- **ax** (`Axes` or `None`) – Axes to plot on. If `None`, a new one will be added to the figure. Default: `None`
- ****kwargs – Forwarded to the plotting routine.

```python
post_field(field, name='field', process=True, save=True)
```
Postprocessing field values.

**Parameters**

- **field** (`numpy.ndarray`) – Field values.
- **name** (`str`, optional) – Name to store the field. The default is “field”.
- **process** (`bool`, optional) – Whether to process field to apply mean, normalizer and trend. The default is True.
- **save** (`bool`, optional) – Whether to store the field under the given name. The default is True.

**Returns**

- **field** – Processed field values.

**Return type** `numpy.ndarray`

```python
pre_pos(pos=None, mesh_type='unstructured', info=False)
```
Preprocessing positions and mesh_type.

**Parameters**

- **pos** (`iterable`) – the position tuple, containing main direction and transversal directions
- **mesh_type** (`str`, optional) – ‘structured’ / ‘unstructured’ Default: “unstructured”
- **info** (`bool`, optional) – Whether to return information

**Returns**

- **iso_pos** `((d, n), numpy.ndarray)` – Isometrized position tuple.
- **shape** (`tuple`) – Shape of the resulting field.
- **info** (`dict`, optional) – Information about settings.

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

```python
set_condition(cond_pos=None, cond_val=None, ext_drift=None, cond_err=None, fit_normalizer=False, fit_variogram=False)
```
Set the conditions for kriging.

This method could also be used to update the kriging setup, when properties were changed. Then you can call it without arguments.

**Parameters**
GeoStatTools Documentation, Release 1.3.4

- **cond_pos** (list, optional) – the position tuple of the conditions (x, [y, z]). Default: current.

- **cond_val** (numpy.ndarray, optional) – the values of the conditions (nan values will be ignored). Default: current.

- **ext_drift** (numpy.ndarray or None, optional) – the external drift values at the given conditions (only for EDK) For multiple external drifts, the first dimension should be the index of the drift term. When passing None, the existing external drift will be used.

- **cond_err** (str, float, list, optional) – The measurement error at the conditioning points. Either “nugget” to apply the model-nugget, a single value applied to all points or an array with individual values for each point. The measurement error has to be <= nugget. The “exact=True” variant only works with “cond_err=nugget”. Default: “nugget”

- **fit_normalizer** (bool, optional) – Wheater to fit the data-normalizer to the given conditioning data. Default: False

- **fit_variogram** (bool, optional) – Wheater to fit the given variogram model to the data. This is done by using isotropy settings of the given model, assuming the sill to be the data variance and with the standard bins provided by the `standard_bins` routine. Default: False

**set_drift_functions** (drift_functions=None)

Set the drift functions for universal kriging.

**Parameters**

- **drift_functions** (list of callable, str or int) – Either a list of callable functions, an integer representing the polynomial order of the drift or one of the following strings:
  - ”linear” : regional linear drift (equals order=1)
  - ”quadratic” : regional quadratic drift (equals order=2)

**Raises** ValueError – If the given drift functions are not callable.

**set_pos** (pos, mesh_type='unstructured', info=False)

Set positions and mesh_type.

**Parameters**

- **pos** (iterable) – the position tuple, containing main direction and transversal directions

- **mesh_type** (str, optional) – ‘structured’ / ‘unstructured’ Default: “unstructured”

- **info** (bool, optional) – Whether to return information

**Returns** info – Information about settings.

**Return type** dict, optional

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

**structured**(*args, **kwargs)

Generate a field on a structured mesh.

See __call__

**to_pyvista** (field_select='field', fieldname='field')

Create a VTK/PyVista grid of the stored field.

**Parameters**
• **field_select** *(str, optional)* – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”

• **fieldname** *(str, optional)* – Name of the field in the VTK file. Default: “field”

**transform** *(method, field=‘field’, store=True, process=False, **kwargs)*

Apply field transformation.

**Parameters**

• **method** *(str)* – Method to use. See *gstools.transform* for available transformations.

• **field** *(str, optional)* – Name of field to be transformed. The default is “field”.

• **store** *(str or bool, optional)* – Whether to store field inplace (True/False) or under a given name. The default is True.

• **process** *(bool, optional)* – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.

• ****kwargs** – Keyword arguments forwarded to selected method.

**Raises** *ValueError* – When method is unknown.

**Returns** Transformed field.

**Return type** *numpy.ndarray*

**unstructured** *(*args, **kwargs)*

Generate a field on an unstructured mesh.

See *__call__*

**vtk_export** *(filename, field_select=‘field’, fieldname=’field’)*

Export the stored field to vtk.

**Parameters**

• **filename** *(str)* – Filename of the file to be saved, including the path. Note that an ending (.vtr or .vtu) will be added to the name.

• **field_select** *(str, optional)* – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”

• **fieldname** *(str, optional)* – Name of the field in the VTK file. Default: “field”

**property all_fields**

All fields as stacked list.

**Type** *list*

**property cond_err**

The measurement errors at the condition points.

**Type** *list*

**property cond_ext_drift**

The ext. drift at the conditions.

**Type** *numpy.ndarray*

**property cond_mean**

Trend at the conditions.

**Type** *numpy.ndarray*

**property cond_no**

The number of the conditions.

**Type** *int*
property cond_pos
The position tuple of the conditions.
  Type list

property cond_trend
Trend at the conditions.
  Type numpy.ndarray

property cond_val
The values of the conditions.
  Type list

default_field_names = ['field', 'krige_var', 'mean_field']
  Default field names.
  Type list

property dim
Dimension of the field.
  Type int

property drift_functions
The drift functions.
  Type list of callable

property drift_no
Number of drift values per point.
  Type int

property exact
Whether the interpolator is exact.
  Type bool

property ext_drift_no
Number of external drift values per point.
  Type int

property field_names
Names of present fields.
  Type list

property field_shape
The shape of the field.
  Type tuple

property has_const_mean
Whether the field has a constant mean or not.
  Type bool

property int_drift_no
Number of internal drift values per point.
  Type int

property krige_size
Size of the kriging system.
  Type int

property latlon
Whether the field depends on geographical coords.
Type `bool`

**property mean**
The mean of the field.

Type `float` or `callable`

**property mesh_type**
The mesh type of the field.

Type `str`

**property model**
The covariance model of the field.

Type `CovModel`

**property name**
The name of the class.

Type `str`

**property normalizer**
Normalizer of the field.

Type `Normalizer`

**property pos**
The position tuple of the field.

Type `tuple`

**property pseudo_inv**
Whether pseudo inverse matrix is used.

Type `bool`

**property pseudo_inv_type**
Method selector for pseudo inverse calculation.

Type `str`

**property trend**
The trend of the field.

Type `float` or `callable`

**property unbiased**
Whether the kriging is unbiased or not.

Type `bool`

**property value_type**
Type of the field values (scalar, vector).

Type `str`
**gstools.krige.Detrended**

```python
class gstools.krige.Detrended(model, cond_pos, cond_val, trend, exact=False, cond_err='nugget', pseudo_inv=True, pseudo_inv_type='pinv', fit_variogram=False)
```

Bases: `gstools.krige.base.Krige`

Detrended simple kriging.

In detrended kriging, the data is detrended before interpolation by simple kriging with zero mean.

The trend needs to be a callable function the user has to provide. This can be used for regression kriging, where the trend function is determined by an external regression algorithm.

This is just a shortcut for simple kriging with a given trend function, zero mean and no normalizer.

A trend can be given with EVERY provided kriging routine.

**Parameters**

- **model** (`CovModel`) – Covariance Model used for kriging.
- **cond_pos** (`list`) – tuple, containing the given condition positions (x, [y, z])
- **cond_val** (`numpy.ndarray`) – the values of the conditions (nan values will be ignored)
- **trend_function** (`callable`) – The callable trend function. Should have the signature: \(f(x, [y, z])\)
- **exact** (`bool`, optional) – Whether the interpolator should reproduce the exact input values. If `False`, `cond_err` is interpreted as measurement error at the conditioning points and the result will be more smooth. Default: `False`
- **cond_err** (`str`, `class float or list`, optional) – The measurement error at the conditioning points. Either “nugget” to apply the model-nugget, a single value applied to all points or an array with individual values for each point. The measurement error has to be \(\leq\) nugget. The “exact=True” variant only works with “cond_err='nugget'”. Default: “nugget”
- **pseudo_inv** (`bool`, optional) – Whether the kriging system is solved with the pseudo inverted kriging matrix. If `True`, this leads to more numerical stability and redundant points are averaged. But it can take more time. Default: `True`
- **pseudo_inv_type** (`str` or `callable`, optional) – Here you can select the algorithm to compute the pseudo-inverse matrix:
  - "pinv": use `pinv` from `scipy` which uses `lstsq`
  - "pinv2": use `pinv2` from `scipy` which uses SVD
  - "pinvh": use `pinvh` from `scipy` which uses eigen-values

  If you want to use another routine to invert the kriging matrix, you can pass a callable which takes a matrix and returns the inverse. Default: "pinv"
- **fit_variogram** (`bool`, optional) – Whether to fit the given variogram model to the data. This is done by using isotropy settings of the given model, assuming the sill to be the data variance and with the standard bins provided by the `standard_bins` routine. Default: `False`

**Attributes**

- **all_fields** `list`: All fields as stacked list.
- **cond_err** `list`: The measurement errors at the condition points.
- **cond_ext_drift** `numpy.ndarray`: The ext. drift at the conditions.
- **cond_mean** `numpy.ndarray`: Trend at the conditions.
cond_no int: The number of the conditions.
cond_pos list: The position tuple of the conditions.
cond_trend numpy.ndarray: Trend at the conditions.
cond_val list: The values of the conditions.
dim int: Dimension of the field.
drift_functions list of callable: The drift functions.
drift_no int: Number of drift values per point.
exact bool: Whether the interpolator is exact.
ext_drift_no int: Number of external drift values per point.
field_names list: Names of present fields.
field_shape tuple: The shape of the field.
has_const_mean bool: Whether the field has a constant mean or not.
int_drift_no int: Number of internal drift values per point.
krige_size int: Size of the kriging system.
latlon bool: Whether the field depends on geographical coords.
mean float or callable: The mean of the field.
mesh_type str: The mesh type of the field.
model CovModel: The covariance model of the field.
name str: The name of the class.
normalizer Normalizer: Normalizer of the field.
pos tuple: The position tuple of the field.
pseudo_inv bool: Whether pseudo inverse matrix is used.
pseudo_inv_type str: Method selector for pseudo inverse calculation.
trend float or callable: The trend of the field.
unbiased bool: Whether the kriging is unbiased or not.
value_type str: Type of the field values (scalar, vector).

Methods

__call__(pos, mesh_type, ext_drift, ...) Generate the kriging field.
delete_fields(select) Delete selected fields.
get_mean(post_process) Calculate the estimated mean of the detrended field.
get_store_config(store[, default, fld_cnt]) Get storage configuration from given selection.
mesh(mesh[, points, direction, name]) Generate a field on a given meshio, ogs5py or PyVista mesh.
plot(field, fig, ax) Plot the spatial random field.
post_field(field[, name, process, save]) Postprocessing field values.
pre_pos(pos, mesh_type, info) Preprocessing positions and mesh_type.
set_condition(cond_pos, cond_val, ...) Set the conditions for kriging.
set_drift_functions(drift_functions) Set the drift functions for universal kriging.
set_pos(pos[, mesh_type, info]) Set positions and mesh_type.
stuctured(*args, **kwargs) Generate a field on a structured mesh.
Table 51 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>to_pyvista([field_select, fieldname])</code></td>
<td>Create a VTK/PyVista grid of the stored field.</td>
</tr>
<tr>
<td><code>transform(method[, field, store, process])</code></td>
<td>Apply field transformation.</td>
</tr>
<tr>
<td><code>unstructured(*args, **kwargs)</code></td>
<td>Generate a field on an unstructured mesh.</td>
</tr>
<tr>
<td><code>vtk_export(filename[, field_select, fieldname])</code></td>
<td>Export the stored field to vtk.</td>
</tr>
</tbody>
</table>

__call__  

```python
(pos=None, mesh_type='unstructured', ext_drift=None, chunk_size=None,
only_mean=False, return_var=True, post_process=True, store=True)
```

Generate the kriging field.

The field is saved as `self.field` and is also returned. The error variance is saved as `self.krige_var` and is also returned.

**Parameters**

- **pos** *(list, optional)* – the position tuple, containing main direction and transversal directions (x, [y, z])
- **mesh_type** *(str, optional)* – ‘structured’ / ‘unstructured’
- **ext_drift** *(numpy.ndarray or None, optional)* – the external drift values at the given positions (only for EDK)
- **chunk_size** *(int, optional)* – Chunk size to cut down the size of the kriging system to prevent memory errors. Default: None
- **only_mean** *(bool, optional)* – Whether to only calculate the mean of the kriging field. Default: False
- **return_var** *(bool, optional)* – Whether to return the variance along with the field. Default: True
- **post_process** *(bool, optional)* – Whether to apply mean, normalizer and trend to the field. Default: True
- **store** *(str or bool or list, optional)* – Whether to store kriging fields (True/False) with default name or with specified names. The default is True for default names [“field”, “krige_var”] or “mean_field” if only_mean=True.

**Returns**

- **field** *(numpy.ndarray)* – the kriged field or mean_field
- **krige_var** *(numpy.ndarray, optional)* – the kriging error variance (if return_var is True and only_mean is False)

`delete_fields(select=None)`  
Delete selected fields.

`get_mean(post_process=True)`  
Calculate the estimated mean of the detrended field.

**Parameters** **post_process** *(bool, optional)* – Whether to apply field-mean and normalizer. Default: True

**Returns** **mean** – Mean of the Kriging System.

**Return type** `float` or `None`

**Notes**

Only not `None` if the Kriging System has a constant mean. This means, no drift is given and the given field-mean is constant. The result is neglecting a potential given trend.
get_store_config(store, default=None, fld_cnt=None)
Get storage configuration from given selection.

Parameters

- **store** (str or bool or list, optional) – Whether to store fields (True/False) with default names or with specified names. The default is True for default names.
- **default** (str or list, optional) – Default field names. The default is “field”.
- **fld_cnt** (None or int, optional) – Number of fields when using lists. The default is None.

Returns

- **name** (str or list) – Name(s) of field.
- **save** (bool or list) – Whether to save field(s).

mesh(mesh, points='centroids', direction='all', name='field', **kwargs)
Generate a field on a given meshio, ogs5py or PyVista mesh.

Parameters

- **mesh** (meshio.Mesh or ogs5py.MSH or PyVista mesh) – The given mesh
- **points** (str, optional) – The points to evaluate the field at. Either the “centroids” of the mesh cells (calculated as mean of the cell vertices) or the “points” of the given mesh. Default: “centroids”
- **direction** (str or list, optional) – Here you can state which direction should be choosen for lower dimension. For example, if you got a 2D mesh in xz direction, you have to pass “xz”. By default, all directions are used. One can also pass a list of indices. Default: “all”
- **name** (str or list of str, optional) – Name(s) to store the field(s) in the given mesh as point_data or cell_data. If to few names are given, digits will be appended. Default: “field”
- ****kwargs – Keyword arguments forwarded to __call__.

Notes

This will store the field in the given mesh under the given name, if a meshio or PyVista mesh was given.

See:

- meshio: https://github.com/nschloe/meshio
- ogs5py: https://github.com/GeoStat-Framework/ogs5py
- PyVista: https://github.com/pyvista/pyvista

plot(field='field', fig=None, ax=None, **kwargs)
Plot the spatial random field.

Parameters

- **field** (str, optional) – Field that should be plotted. Default: “field”
- **fig** (Figure or None) – Figure to plot the axes on. If None, a new one will be created. Default: None
- **ax** (Axes or None) – Axes to plot on. If None, a new one will be added to the figure. Default: None
- ****kwargs – Forwarded to the plotting routine.
post_field(field, name='field', process=True, save=True)
    Postprocessing field values.

Parameters
    • field (numpy.ndarray) – Field values.
    • name (str, optional) – Name to store the field. The default is “field”.
    • process (bool, optional) – Whether to process field to apply mean, normalizer and trend. The default is True.
    • save (bool, optional) – Whether to store the field under the given name. The default is True.

Returns field – Processed field values.
Return type numpy.ndarray

pre_pos(pos=None, mesh_type='unstructured', info=False)
    Preprocessing positions and mesh_type.

Parameters
    • pos (iterable) – the position tuple, containing main direction and transversal directions
    • mesh_type (str, optional) – ‘structured’ / ‘unstructured’ Default: “unstructured”
    • info (bool, optional) – Whether to return information

Returns
    • iso_pos ((d, n), numpy.ndarray) – Isometrized position tuple.
    • shape (tuple) – Shape of the resulting field.
    • info (dict, optional) – Information about settings.

Warning: When setting a new position tuple that differs from the present one, all stored fields will be deleted.

set_condition(cond_pos=None, cond_val=None, ext_drift=None, cond_err=None, fit_normalizer=False, fit_variogram=False)
    Set the conditions for kriging.

This method could also be used to update the kriging setup, when properties were changed. Then you can call it without arguments.

Parameters
    • cond_pos (list, optional) – the position tuple of the conditions (x, [y, z]). Default: current.
    • cond_val (numpy.ndarray, optional) – the values of the conditions (nan values will be ignored). Default: current.
    • ext_drift (numpy.ndarray or None, optional) – the external drift values at the given conditions (only for EDK) For multiple external drifts, the first dimension should be the index of the drift term. When passing None, the existing external drift will be used.
    • cond_err (str, :class float, list, optional) – The measurement error at the conditioning points. Either “nugget” to apply the model-nugget, a single value applied to all points or an array with individual values for each point. The measurement error has to be <= nugget. The “exact=True” variant only works with “cond_err='nugget’”. Default: “nugget”
• **fit_normalizer** (bool, optional) – Wheater to fit the data-normalizer to the given conditioning data. Default: False

• **fit_variogram** (bool, optional) – Wheater to fit the given variogram model to the data. This is done by using isotropy settings of the given model, assuming the sill to be the data variance and with the standard bins provided by the `standard_bins` routine. Default: False

**set_drift_functions** (*drift_functions=None*)

Set the drift functions for universal kriging.

Parameters

- **drift_functions** (list of callable, str or int) – Either a list of callable functions, an integer representing the polynomial order of the drift or one of the following strings:
  - "linear" : regional linear drift (equals order=1)
  - "quadratic" : regional quadratic drift (equals order=2)

 Raises **ValueError** – If the given drift functions are not callable.

**set_pos** (*pos*, mesh_type='unstructured', info=False)

Set positions and mesh_type.

Parameters

- **pos** (iterable) – the position tuple, containing main direction and transversal directions
- **mesh_type** (str, optional) – 'structured' / 'unstructured' Default: "unstructured"
- **info** (bool, optional) – Whether to return information

Returns info – Information about settings.

Return type **dict**, optional

**Warning:** When setting a new position tuple that differs from the present one, all stored fields will be deleted.

**structured** (*args, **kwargs*)

Generate a field on a structured mesh.

See **call**

**to_pyvista** (*field_select='field', fieldname='field')*

Create a VTK/PyVista grid of the stored field.

Parameters

- **field_select** (str, optional) – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”
- **fieldname** (str, optional) – Name of the field in the VTK file. Default: “field”

**transform** (*method, field='field', store=True, process=False, **kwargs*)

Apply field transformation.

Parameters

- **method** (str) – Method to use. See `gstools.transform` for available transformations.
- **field** (str, optional) – Name of field to be transformed. The default is “field”.
- **store** (str or bool, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.
• **process** (bool, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.

• **kwargs** – Keyword arguments forwarded to selected method.

**Raises** [ValueError](#) – When method is unknown.

**Returns** Transformed field.

**Return type** `numpy.ndarray`

### unstructured(*args, **kwargs)

Generate a field on an unstructured mesh.

See `__call__`

### vtk_export(filename, field_select='field', fieldname='field')

Export the stored field to vtk.

**Parameters**

• **filename** (str) – Filename of the file to be saved, including the path. Note that an ending (.vtr or .vtu) will be added to the name.

• **field_select** (str, optional) – Field that should be stored. Can be: “field”, “raw_field”, “krige_field”, “err_field” or “krige_var”. Default: “field”

• **fieldname** (str, optional) – Name of the field in the VTK file. Default: “field”

**property** all_fields

All fields as stacked list.

**Type** `list`

**property** cond_err

The measurement errors at the condition points.

**Type** `list`

**property** cond_ext_drift

The ext. drift at the conditions.

**Type** `numpy.ndarray`

**property** cond_mean

Trend at the conditions.

**Type** `numpy.ndarray`

**property** cond_no

The number of the conditions.

**Type** `int`

**property** cond_pos

The position tuple of the conditions.

**Type** `list`

**property** cond_trend

Trend at the conditions.

**Type** `numpy.ndarray`

**property** cond_val

The values of the conditions.

**Type** `list`

**default_field_names** = ['field', 'krige_var', 'mean_field']

Default field names.

**Type** `list`
property dim
    Dimension of the field.
    Type int

property drift_functions
    The drift functions.
    Type list of callable

property drift_no
    Number of drift values per point.
    Type int

property exact
    Whether the interpolator is exact.
    Type bool

property ext_drift_no
    Number of external drift values per point.
    Type int

property field_names
    Names of present fields.
    Type list

property field_shape
    The shape of the field.
    Type tuple

property has_const_mean
    Whether the field has a constant mean or not.
    Type bool

property int_drift_no
    Number of internal drift values per point.
    Type int

property kriging_size
    Size of the kriging system.
    Type int

property latlon
    Whether the field depends on geographical coords.
    Type bool

property mean
    The mean of the field.
    Type float or callable

property mesh_type
    The mesh type of the field.
    Type str

property model
    The covariance model of the field.
    Type CovModel

property name
    The name of the class.
Type `str`

**property normalizer**
Normalizer of the field.

Type `Normalizer`

**property pos**
The position tuple of the field.

Type `tuple`

**property pseudo_inv**
Whether pseudo inverse matrix is used.

Type `bool`

**property pseudo_inv_type**
Method selector for pseudo inverse calculation.

Type `str`

**property trend**
The trend of the field.

Type `float` or `callable`

**property unbiased**
Whether the kriging is unbiased or not.

Type `bool`

**property value_type**
Type of the field values (scalar, vector).

Type `str`
3.10 gstools.random

GStools subpackage for random number generation.

Random Number Generator

| RNG(seed) | A random number generator for different distributions and multiple streams. |

gstools.random.RNG

class gstools.random.RNG (seed=None)  
Bases: object

A random number generator for different distributions and multiple streams.

- **Parameters**
  - *seed* (int or None, optional) – The seed of the master RNG, if None, a random seed is used. Default: None

- **Attributes**
  - *seed* : int: Seed of the master RNG.

- **Methods**
  - `sample_dist([pdf, cdf, ppf, size])`  
    Sample from a distribution given by pdf, cdf and/or ppf.
  - `sample_in_pdf(ln_pdf[, size, sample_around, ...])`  
    Sample from a distribution given by ln(pdf).
  - `sample_sphere(dim[, size])`  
    Uniform sampling on a d-dimensional sphere.
  - `sample_dist(pdf=None, cdf=None, ppf=None, size=None, **kwargs)`  
    Sample from a distribution given by pdf, cdf and/or ppf.

- **Parameters**
  - *pdf* (callable or None, optional) – Probability density function of the given distribution, that takes a single argument Default: None
  - *cdf* (callable or None, optional) – Cumulative distribution function of the given distribution, that takes a single argument Default: None
  - *ppf* (callable or None, optional) – Percent point function of the given distribution, that takes a single argument Default: None
  - *size* (int or None, optional) – sample size. Default: None
  - **kwargs** – Keyword-arguments that are forwarded to scipy.stats.rv_continuous.

- **Returns**
  - *samples* – the samples from the given distribution

- **Return type**
  - float or numpy.ndarray

**Notes**
At least pdf or cdf needs to be given.
sample_ln_pdf(ln_pdf, size=None, sample_around=1.0, nwalkers=50, burn_in=20, oversampling_factor=10)

Sample from a distribution given by ln(pdf).

This algorithm uses the `emcee.EnsembleSampler`

**Parameters**

- **ln_pdf** (*callable*) – The logarithm of the Probability density function of the given distribution, that takes a single argument
- **size** (*int or None, optional*) – sample size. Default: None
- **sample_around** (*float, optional*) – Starting point for initial guess Default: 1.
- **nwalkers** (*int, optional*) – The number of walkers in the mcmc sampler. Used for the `emcee.EnsembleSampler` class. Default: 50
- **burn_in** (*int, optional*) – Number of burn-in runs in the mcmc algorithm. Default: 20
- **oversampling_factor** (*int, optional*) – To guess the sample number needed for proper results, we use a factor for oversampling. The intern used sample-size is calculated by

\[
sample\_size = \max(burn\_in, (\text{size}/nwalkers) \times \text{oversampling\_factor})
\]

So at least, as much as the burn-in runs. Default: 10

sample_sphere(dim, size=None)

Uniform sampling on a d-dimensional sphere.

**Parameters**

- **dim** (*int*) – Dimension of the sphere. Just 1, 2, and 3 supported.
- **size** (*int, optional*) – sample size

**Returns**

`coord` – x[0], y[1], z[2] coordinates on the sphere with shape (dim, size)

**Return type**

`numpy.ndarray`

**property random**

Randomstate.

Get a stream to the numpy Random number generator. You can use this, to call any provided distribution from `numpy.random.RandomState`.

**Type**

`numpy.random.RandomState`

**property seed**

Seed of the master RNG.

The setter property not only saves the new seed, but also creates a new master RNG function with the new seed.

**Type**

`int`
Seed Generator

\[ \text{MasterRNG}(\text{seed}) \]

Master random number generator for generating seeds.

\text{gstools.random.MasterRNG}

class \text{gstools.random.MasterRNG}(\text{seed})

Bases: object

Master random number generator for generating seeds.

**Parameters**

\text{seed} (int or None, optional) – The seed of the master RNG, if None, a random seed is used. Default: None

**Attributes**

\text{seed} int: Seed of the master RNG.

**Methods**

\_\_\_call\_\_() Return a random seed.

\_\_\_call\_\_()

Return a random seed.

\text{property seed}

Seed of the master RNG.

The setter property not only saves the new seed, but also creates a new master RNG function with the new seed.

**Type** int
### Distribution factory

```python
dist_gen(pdf_in, cdf_in, ppf_in) Distribution Factory.
```

**gstools.random.dist_gen**

gstools.random.dist_gen(pdf_in=None, cdf_in=None, ppf_in=None, **kwargs)
Distribution Factory.

**Parameters**

- `pdf_in` ([callable](#) or [None](#), optional) – PDF-probability distribution function of the given distribution, that takes a single argument Default: [None](#)
- `cdf_in` ([callable](#) or [None](#), optional) – CDF-cumulative distribution function of the given distribution, that takes a single argument Default: [None](#)
- `ppf_in` ([callable](#) or [None](#), optional) – PPF-percent point function of the given distribution, that takes a single argument Default: [None](#)
- `**kwargs` – Keyword-arguments forwarded to [scipy.stats.rv_continuous](#).

**Returns**

- `dist` – The constructed distribution.

**Return type**

[scipy.stats.rv_continuous](#)

**Notes**

At least pdf or cdf needs to be given.
3.11 gstools.tools

GSTools subpackage providing miscellaneous tools.

Export

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>vtk_export(filename, pos, fields[, mesh_type])</code></td>
<td>Export a field to vtk,</td>
</tr>
<tr>
<td><code>vtk_export_structured(filename, pos, fields)</code></td>
<td>Export a field to vtk structured rectilinear grid file.</td>
</tr>
<tr>
<td><code>vtk_export_unstructured(filename, pos, fields)</code></td>
<td>Export a field to vtk unstructured grid file.</td>
</tr>
<tr>
<td><code>to_vtk(pos, fields[, mesh_type])</code></td>
<td>Create a VTK/PyVista grid.</td>
</tr>
<tr>
<td><code>to_vtk_structured(pos, fields)</code></td>
<td>Create a vtk structured rectilinear grid from a field.</td>
</tr>
<tr>
<td><code>to_vtk_unstructured(pos, fields)</code></td>
<td>Export a field to vtk structured rectilinear grid file.</td>
</tr>
</tbody>
</table>

**gstools.tools.vtk_export**

Export a field to vtk.

**Parameters**

- `filename (str)` – Filename of the file to be saved, including the path. Note that an ending (.vtr or .vtu) will be added to the name.
- `pos (list)` – the position tuple, containing main direction and transversal directions
- `fields (dict or numpy.ndarray)` – [Un]structured fields to be saved. Either a single numpy array as returned by SRF, or a dictionary of fields with theirs names as keys.
- `mesh_type (str, optional)` – 'structured' / 'unstructured'. Default: structured

**gstools.tools.vtk_export_structured**

Export a field to vtk structured rectilinear grid file.

**Parameters**

- `filename (str)` – Filename of the file to be saved, including the path. Note that an ending (.vtr) will be added to the name.
- `pos (list)` – the position tuple, containing main direction and transversal directions
- `fields (dict or numpy.ndarray)` – Structured fields to be saved. Either a single numpy array as returned by SRF, or a dictionary of fields with theirs names as keys.

**gstools.tools.vtk_export_unstructured**

Export a field to vtk unstructured grid file.

**Parameters**

- `filename (str)` – Filename of the file to be saved, including the path. Note that an ending (.vtu) will be added to the name.
- `pos (list)` – the position tuple, containing main direction and transversal directions
• **fields** (dict or numpy.ndarray) – Unstructured fields to be saved. Either a single numpy array as returned by SRF, or a dictionary of fields with theirs names as keys.

`gstools.tools.to_vtk`  
`gstools.tools.to_vtk(pos, fields, mesh_type='unstructured')`  
Create a VTK/PyVista grid.

**Parameters**

- **pos** (list) – the position tuple, containing main direction and transversal directions
- **fields** (dict or numpy.ndarray) – [Un]structured fields to be saved. Either a single numpy array as returned by SRF, or a dictionary of fields with theirs names as keys.
- **mesh_type** (str, optional) – ‘structured’ / ‘unstructured’. Default: structured

**Returns**  
This will return a PyVista object for the given field data in its appropriate type. Structured meshes will return a `pyvista.RectilinearGrid` and unstructured meshes will return a `pyvista.UnstructuredGrid` object.

**Return type**  
`pyvista.RectilinearGrid` or `pyvista.UnstructuredGrid`

`gstools.tools.to_vtk_structured`  
`gstools.tools.to_vtk_structured(pos, fields)`  
Create a vtk structured rectilinear grid from a field.

**Parameters**

- **pos** (list) – the position tuple, containing main direction and transversal directions
- **fields** (dict or numpy.ndarray) – Structured fields to be saved. Either a single numpy array as returned by SRF, or a dictionary of fields with theirs names as keys.

**Returns**  
A PyVista rectilinear grid of the structured field data. Data arrays live on the point data of this PyVista dataset.

**Return type**  
`pyvista.RectilinearGrid`

`gstools.tools.to_vtk_unstructured`  
`gstools.tools.to_vtk_unstructured(pos, fields)`  
Export a field to vtk structured rectilinear grid file.

**Parameters**

- **pos** (list) – the position tuple, containing main direction and transversal directions
- **fields** (dict or numpy.ndarray) – Unstructured fields to be saved. Either a single numpy array as returned by SRF, or a dictionary of fields with theirs names as keys.

**Returns**  
A PyVista unstructured grid of the unstructured field data. Data arrays live on the point data of this PyVista dataset. This is essentially a point cloud with no topology.

**Return type**  
`pyvista.UnstructuredGrid`
### Special functions

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>confidence_scaling()</code></td>
<td>Scaling of standard deviation to get the desired confidence interval.</td>
</tr>
<tr>
<td><code>inc_gamma(s, x)</code></td>
<td>Calculate the (upper) incomplete gamma function.</td>
</tr>
<tr>
<td><code>inc_gamma_low(s, x)</code></td>
<td>Calculate the lower incomplete gamma function.</td>
</tr>
<tr>
<td><code>exp_int(s, x)</code></td>
<td>Calculate the exponential integral $E_s(x)$.</td>
</tr>
<tr>
<td><code>inc_beta(a, b, x)</code></td>
<td>Calculate the incomplete Beta function.</td>
</tr>
<tr>
<td><code>tplstable_cor(r, len_scale, hurst, alpha)</code></td>
<td>Calculate the correlation function of the TPLStable model.</td>
</tr>
<tr>
<td><code>tpl_exp_spec_dens(k, dim, len_scale, hurst)</code></td>
<td>Spectal density of the TPLExponential covariance model.</td>
</tr>
<tr>
<td><code>tpl_gau_spec_dens(k, dim, len_scale, hurst)</code></td>
<td>Spectral density of the TPLGaussian covariance model.</td>
</tr>
</tbody>
</table>

#### gstools.tools.confidence_scaling

- **Function**: `gstools.tools.confidence_scaling(per=0.95)`
- **Description**: Scaling of standard deviation to get the desired confidence interval.
- **Parameters**
  - `per` (float, optional) – Confidence level. The default is 0.95.
- **Returns**
  - Scale to multiply the standard deviation with.
- **Return type**: float

#### gstools.tools.inc_gamma

- **Function**: `gstools.tools.inc_gamma(s, x)`
- **Description**: Calculate the (upper) incomplete gamma function.
- **Given by**: $\Gamma(s, x) = \int_x^{\infty} t^{s-1} e^{-t} dt$
- **Parameters**
  - `s` (float) – exponent in the integral
  - `x` (numpy.ndarray) – input values

#### gstools.tools.inc_gamma_low

- **Function**: `gstools.tools.inc_gamma_low(s, x)`
- **Description**: Calculate the lower incomplete gamma function.
- **Given by**: $\gamma(s, x) = \int_0^x t^{s-1} e^{-t} dt$
- **Parameters**
  - `s` (float) – exponent in the integral
  - `x` (numpy.ndarray) – input values
**gstools.tools.exp_int**

*gstools.tools.exp_int*(s, x)

Calculate the exponential integral \( E_s(x) \).

Given by: \( E_s(x) = \int_1^{\infty} \frac{e^{-x^2 t}}{t^s} \, dt \)

**Parameters**

- **s** (float) – exponent in the integral (should be > -100)
- **x** (numpy.ndarray) – input values

**gstools.tools.inc_beta**

*gstools.tools.inc_beta*(a, b, x)

Calculate the incomplete Beta function.

Given by: \( B(a, b; x) = \int_0^x t^{a-1} (1 - t)^{b-1} \, dt \)

**Parameters**

- **a** (float) – first exponent in the integral
- **b** (float) – second exponent in the integral
- **x** (numpy.ndarray) – input values

**gstools.tools.tplstable_cor**

*gstools.tools.tplstable_cor*(r, len_scale, hurst, alpha)

Calculate the correlation function of the TPLStable model.

Given by the following correlation function:

\[
\rho(r) = \frac{2H}{\alpha} \cdot E_{1+\frac{2H}{\alpha}} \left( \left( \frac{r}{\ell} \right)^\alpha \right)
\]

**Parameters**

- **r** (numpy.ndarray) – input values
- **len_scale** (float) – length-scale of the model.
- **hurst** (float) – Hurst coefficient of the power law.
- **alpha** (float, optional) – Shape parameter of the stable model.

**gstools.tools.tpl_exp_spec_dens**

*gstools.tools.tpl_exp_spec_dens*(k, dim, len_scale, hurst, len_low=0.0)

Spectral density of the TPLExponential covariance model.

**Parameters**

- **k** (float) – Radius of the phase: \( k = \| k \| \)
- **dim** (int) – Dimension of the model.
- **len_scale** (float) – Length scale of the model.
- **hurst** (float) – Hurst coefficient of the power law.
- **len_low** (float, optional) – The lower length scale truncation of the model. Default: 0.0

**Returns** spectral density of the TPLExponential model
Return type float

gstools.tools.tpl_gau_spec_dens

gstools.tools.tpl_gau_spec_dens(k, dim, len_scale, hurst, len_low=0.0)
Spectral density of the TPLGaussian covariance model.

Parameters

- k (float) – Radius of the phase: \( k = \|k\| \)
- dim (int) – Dimension of the model.
- len_scale (float) – Length scale of the model.
- hurst (float) – Hurst coefficient of the power law.
- len_low (float, optional) – The lower length scale truncation of the model. Default: 0.0

Returns spectral density of the TPLExponential model
Return type float

Geometric

<table>
<thead>
<tr>
<th>Function Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>rotated_main_axes(dim, angles)</td>
<td>Create list of the main axis defined by the given system rotations.</td>
</tr>
<tr>
<td>set_angles(dim, angles)</td>
<td>Set the angles for the given dimension.</td>
</tr>
<tr>
<td>set_anis(dim, anis)</td>
<td>Set the anisotropy ratios for the given dimension.</td>
</tr>
<tr>
<td>no_of_angles(dim)</td>
<td>Calculate number of rotation angles depending on the dimension.</td>
</tr>
<tr>
<td>rotation_planes(dim)</td>
<td>Get all 2D sub-planes for rotation.</td>
</tr>
<tr>
<td>givens_rotation(dim, plane, angle)</td>
<td>Givens rotation matrix in arbitrary dimensions.</td>
</tr>
<tr>
<td>matrix_rotate(dim, angles)</td>
<td>Create a matrix to rotate points to the target coordinate-system.</td>
</tr>
<tr>
<td>matrix_derotate(dim, angles)</td>
<td>Create a matrix to derotate points to the initial coordinate-system.</td>
</tr>
<tr>
<td>matrix_isotropify(dim, anis)</td>
<td>Create a stretching matrix to make things isotrope.</td>
</tr>
<tr>
<td>matrix_anisotropify(dim, anis)</td>
<td>Create a stretching matrix to make things anisotropic.</td>
</tr>
<tr>
<td>matrix_isometrize(dim, angles, anis)</td>
<td>Create a matrix to derotate points and make them isotrope.</td>
</tr>
<tr>
<td>matrix_anisometrize(dim, angles, anis)</td>
<td>Create a matrix to rotate points and make them anisotropic.</td>
</tr>
<tr>
<td>ang2dir(angles[, dtype, dim])</td>
<td>Convert n-D spherical coordinates to Euclidean direction vectors.</td>
</tr>
<tr>
<td>generate_grid(pos)</td>
<td>Generate grid from a structured position tuple.</td>
</tr>
<tr>
<td>generate_st_grid(pos, time[, mesh_type])</td>
<td>Generate spatio-temporal grid from a position tuple and time array.</td>
</tr>
</tbody>
</table>
**gstools.tools.rotated_main_axes**

**gstools.tools.rotated_main_axes**(dim, angles)

Create list of the main axis defined by the given system rotations.

**Parameters**

- dim (int) – spatial dimension
- angles (float or list) – the rotation angles of the target coordinate-system

**Returns**

Main axes of the target coordinate-system.

**Return type**

numpy.ndarray

---

**gstools.tools.set_angles**

**gstools.tools.set_angles**(dim, angles)

Set the angles for the given dimension.

**Parameters**

- dim (int) – spatial dimension
- angles (float or list) – the angles of the SRF

**Returns**

angles – the angles fitting to the dimension

**Return type**

float

---

**Notes**

If too few angles are given, they are filled up with 0.

---

**gstools.tools.set_anis**

**gstools.tools.set_anis**(dim, anis)

Set the anisotropy ratios for the given dimension.

**Parameters**

- dim (int) – spatial dimension
- anis (list of float) – the anisotropy of length scales along the transversal directions

**Returns**

anis – the anisotropy of length scales fitting the dimensions

**Return type**

list of float

---

**Notes**

If too few anisotropy ratios are given, they are filled up with 1.
gstools.tools.no_of_angles

gstools.tools.no_of_angles(dim)
    Calculate number of rotation angles depending on the dimension.

    Parameters
    dim (int) – spatial dimension

    Returns
    Number of angles.

    Return type
    int

gstools.tools.rotation_planes

gstools.tools.rotation_planes(dim)
    Get all 2D sub-planes for rotation.

    Parameters
    dim (int) – spatial dimension

    Returns
    All 2D sub-planes for rotation.

    Return type
    list of tuple of int

gstools.tools.givens_rotation

gstools.tools.givens_rotation(dim, plane, angle)
    Givens rotation matrix in arbitrary dimensions.

    Parameters
    • dim (int) – spatial dimension
    • plane (list of int) – the plane to rotate in, given by the indices of the two defining axes. For example the xy plane is defined by (0,1)
    • angle (float or list) – the rotation angle in the given plane

    Returns
    Rotation matrix.

    Return type
    numpy.ndarray

gstools.tools.matrix_rotate

gstools.tools.matrix_rotate(dim, angles)
    Create a matrix to rotate points to the target coordinate-system.

    Parameters
    • dim (int) – spatial dimension
    • angles (float or list) – the rotation angles of the target coordinate-system

    Returns
    Rotation matrix.

    Return type
    numpy.ndarray
### gstools.tools.matrix_derotate

**gstools.tools.matrix_derotate**(dim, angles)

Create a matrix to derotate points to the initial coordinate-system.

**Parameters**

- **dim**(int) – spatial dimension
- **angles**(float or list) – the rotation angles of the target coordinate-system

**Returns** Rotation matrix.

**Return type** numpy.ndarray

### gstools.tools.matrix_isotropify

**gstools.tools.matrix_isotropify**(dim, anis)

Create a stretching matrix to make things isotrope.

**Parameters**

- **dim**(int) – spatial dimension
- **anis**(list of float) – the anisotropy of length scales along the transversal directions

**Returns** Stretching matrix.

**Return type** numpy.ndarray

### gstools.tools.matrix_anisotropify

**gstools.tools.matrix_anisotropify**(dim, anis)

Create a stretching matrix to make things anisotrope.

**Parameters**

- **dim**(int) – spatial dimension
- **anis**(list of float) – the anisotropy of length scales along the transversal directions

**Returns** Stretching matrix.

**Return type** numpy.ndarray

### gstools.tools.matrix_isometrize

**gstools.tools.matrix_isometrize**(dim, angles, anis)

Create a matrix to derotate points and make them isotrope.

**Parameters**

- **dim**(int) – spatial dimension
- **angles**(float or list) – the rotation angles of the target coordinate-system
- **anis**(list of float) – the anisotropy of length scales along the transversal directions

**Returns** Transformation matrix.

**Return type** numpy.ndarray
gstools.tools.matrix_anisometrize

Create a matrix to rotate points and make them anisotropic.

**Parameters**

- `dim (int)` – spatial dimension
- `angles (float or list)` – the rotation angles of the target coordinate-system
- `anis (list of float)` – the anisotropy of length scales along the transversal directions

**Returns** Transformation matrix.

**Return type** `numpy.ndarray`

gstools.tools.ang2dir

Convert n-D spherical coordinates to Euclidean direction vectors.

**Parameters**

- `angles (list of numpy.ndarray)` – spherical coordinates given as angles.
- `dtype (data-type, optional)` – The desired data-type for the array. If not given, then the type will be determined as the minimum type required to hold the objects in the sequence. Default: None
- `dim (int, optional)` – Cut of information above the given dimension. Otherwise, dimension is determined by number of angles Default: None

**Returns** the array of direction vectors

**Return type** `numpy.ndarray`

gstools.tools.generate_grid

Generate grid from a structured position tuple.

**Parameters** `pos (tuple of numpy.ndarray)` – The structured position tuple.

**Returns** Unstructured position tuple.

**Return type** `numpy.ndarray`

gstools.tools.generate_st_grid

Generate spatio-temporal grid from a position tuple and time array.

**Parameters**

- `pos (tuple of numpy.ndarray)` – The (un-)structured position tuple.
- `time (iterable)` – The time array.
- `mesh_type (str, optional)` – ‘structured’ / ‘unstructured’ Default: “unstructured”

**Returns** Unstructured spatio-temporal point tuple.

**Return type** `numpy.ndarray`
Notes
Time dimension will be the last one.

Misc

| EARTH_RADIUS | earth radius for WGS84 ellipsoid in km |
3.12 gstools.transform

GStools subpackage providing transformations to post-process normal fields.

Wrapper

```python
gstools.transform.apply(fld, method[, field, store, process])
```

Apply field transformation.

**Parameters**

- `fld` (*Field*) – Field class containing a generated field.
- `method` (*str*) – Method to use. See `gstools.transform` for available transformations.
- `field` (*str, optional*) – Name of field to be transformed. The default is “field”.
- `store` (*str or bool, optional*) – Whether to store field inplace (True/False) or with a specified name. The default is True.
- `process` (*bool, optional*) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- `**kwargs` – Keyword arguments forwarded to selected method.

**Raises** `ValueError` – When method is unknown.

**Returns** Transformed field.

**Return type** `numpy.ndarray`

Field Transformations

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>binary(fld[, divide, upper, lower, field,...])</code></td>
<td>Binary transformation.</td>
</tr>
<tr>
<td><code>discrete(fld[, values[, thresholds, field,...]])</code></td>
<td>Discrete transformation.</td>
</tr>
<tr>
<td><code>boxcox(fld[, lmbda, shift, field, store,...])</code></td>
<td>(Inverse) Box-Cox transformation to denormalize data.</td>
</tr>
<tr>
<td><code>zinnharvey(fld[, conn, field, store,...])</code></td>
<td>Zinn and Harvey transformation to connect low or high values.</td>
</tr>
<tr>
<td><code>normal_force_moments(fld[, field,...])</code></td>
<td>Force moments of a normal distributed field.</td>
</tr>
<tr>
<td><code>normal_to_lognormal(fld[, field,...])</code></td>
<td>Transform normal distribution to log-normal distribution.</td>
</tr>
<tr>
<td><code>normal_to_uniform(fld[, field,...])</code></td>
<td>Transform normal distribution to uniform distribution on [0, 1].</td>
</tr>
<tr>
<td><code>normal_to_arcsin(fld[, a, b, field,...])</code></td>
<td>Transform normal distribution to the bimodal arcsin distribution.</td>
</tr>
<tr>
<td><code>normal_to_uquad(fld[, a, b, field,...])</code></td>
<td>Transform normal distribution to U-quadratic distribution.</td>
</tr>
<tr>
<td><code>apply_function(fld[, function[, field,...]])</code></td>
<td>Apply function as field transformation.</td>
</tr>
</tbody>
</table>
**gstools.transform.binary**

`gstools.transform.binary(fld, divide=None, upper=None, lower=None, field='field', store=True, process=False, keep_mean=True)`

Binary transformation.

After this transformation, the field only has two values.

**Parameters**

- **fld** (*Field*) – Field class containing a generated field.
- **divide** (*float*, optional) – The dividing value. Default: `fld.mean`
- **upper** (*float*, optional) – The resulting upper value of the field. Default: `mean + sqrt(fld.model.sill)`
- **lower** (*float*, optional) – The resulting lower value of the field. Default: `mean - sqrt(fld.model.sill)`
- **field** (*str*, optional) – Name of field to be transformed. The default is “field”.
- **store** (*str or bool*, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.
- **process** (*bool*, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- **keep_mean** (*bool*, optional) – Whether to keep the mean of the field if process=True. The default is True.

**Returns** Transformed field.

**Return type** `numpy.ndarray`

**gstools.transform.discrete**

`gstools.transform.discrete(fld, values, thresholds='arithmetic', field='field', store=True, process=False, keep_mean=True)`

Discrete transformation.

After this transformation, the field has only `len(values)` discrete values.

**Parameters**

- **fld** (*Field*) – Field class containing a generated field.
- **values** (*numpy.ndarray*) – The discrete values the field will take
- **thresholds** (*str or numpy.ndarray*, optional) – the thresholds, where the value classes are separated possible values are: *”arithmetic”: the mean of the 2 neighbouring values *”equal”: deveide the field into equal parts * an array of explicitly given thresholds Default: “arithmetic”
- **field** (*str*, optional) – Name of field to be transformed. The default is “field”.
- **store** (*str or bool*, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.
- **process** (*bool*, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- **keep_mean** (*bool*, optional) – Whether to keep the mean of the field if process=True. The default is True.

**Returns** Transformed field.

**Return type** `numpy.ndarray`
gstools.transform.boxcox

gstools.transform.boxcox(fld, lmbda=1, shift=0, field='field', store=True, process=False, keep_mean=True)

(Inverse) Box-Cox transformation to denormalize data.

After this transformation, the again Box-Cox transformed field is normal distributed.

See: https://en.wikipedia.org/wiki/Power_transform#Box%E2%80%93Cox_transformation

Parameters

- **fld** (*Field*) – Field class containing a generated field.
- **lmbda** (*float*, optional) – The lambda parameter of the Box-Cox transformation. For lmbda=0 one obtains the log-normal transformation. Default: 1
- **shift** (*float*, optional) – The shift parameter from the two-parametric Box-Cox transformation. The field will be shifted by that value before transformation. Default: 0
- **field** (*str*, optional) – Name of field to be transformed. The default is “field”.
- **store** (*str* or *bool*, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.
- **process** (*bool*, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- **keep_mean** (*bool*, optional) – Whether to keep the mean of the field if process=True. The default is True.

Returns  Transformed field.

Return type  *numpy.ndarray*

gstools.transform.zinnharvey

gstools.transform.zinnharvey(fld, conn='high', field='field', store=True, process=False, keep_mean=True)

Zinn and Harvey transformation to connect low or high values.

After this transformation, the field is still normal distributed.

Parameters

- **fld** (*Field*) – Field class containing a generated field.
- **conn** (*str*, optional) – Desired connectivity. Either “low” or “high”. Default: “high”
- **field** (*str*, optional) – Name of field to be transformed. The default is “field”.
- **store** (*str* or *bool*, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.
- **process** (*bool*, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- **keep_mean** (*bool*, optional) – Whether to keep the mean of the field if process=True. The default is True.

Returns  Transformed field.

Return type  *numpy.ndarray*
gstools.transform.normal_force_moments

```python
gstools.transform.normal_force_moments(fld, field='field', store=True, process=False, keep_mean=True)
```

Force moments of a normal distributed field. After this transformation, the field is still normal distributed.

**Parameters**

- `fld` (*Field*) – Field class containing a generated field.
- `field` (*str*, optional) – Name of field to be transformed. The default is “field”.
- `store` (*str or bool*, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.
- `process` (*bool*, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- `keep_mean` (*bool*, optional) – Whether to keep the mean of the field if process=True. The default is True.

**Returns** Transformed field.

**Return type** *numpy.ndarray*

---

gstools.transform.normal_to_lognormal

```python
gstools.transform.normal_to_lognormal(fld, field='field', store=True, process=False, keep_mean=True)
```

Transform normal distribution to log-normal distribution. After this transformation, the field is log-normal distributed.

**Parameters**

- `fld` (*Field*) – Field class containing a generated field.
- `field` (*str*, optional) – Name of field to be transformed. The default is “field”.
- `store` (*str or bool*, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.
- `process` (*bool*, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- `keep_mean` (*bool*, optional) – Whether to keep the mean of the field if process=True. The default is True.

**Returns** Transformed field.

**Return type** *numpy.ndarray*

---

gstools.transform.normal_to_uniform

```python
gstools.transform.normal_to_uniform(fld, field='field', store=True, process=False, keep_mean=True)
```

Transform normal distribution to uniform distribution on [0, 1]. After this transformation, the field is uniformly distributed on [0, 1].

**Parameters**

- `fld` (*Field*) – Field class containing a generated field.
- `keep_mean` (*bool*, optional) – Whether to keep the mean of the field if process=True. The default is True.
gstools.transform.normal_to_arcsin

gstools.transform.normal_to_arcsin(fld, a=None, b=None, field='field', store=True, process=False, keep_mean=True)

Transform normal distribution to the bimodal arcsin distribution.
See: https://en.wikipedia.org/wiki/Arcsine_distribution

After this transformation, the field is arcsin-distributed on [a, b].

Parameters

- **fld** (*Field*) – Field class containing a generated field.
- **a** (*float*, optional) – Parameter a of the arcsin distribution (lower bound). Default: keep mean and variance
- **b** (*float*, optional) – Parameter b of the arcsin distribution (upper bound). Default: keep mean and variance
- **field** (*str*, optional) – Name of field to be transformed. The default is “field”.
- **store** (*str* or *bool*, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.
- **process** (*bool*, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- **keep_mean** (*bool*, optional) – Whether to keep the mean of the field if process=True. The default is True.

Returns  Transformed field.
Return type  *numpy.ndarray*

---

gstools.transform.normal_to_uquad

gstools.transform.normal_to_uquad(fld, a=None, b=None, field='field', store=True, process=False, keep_mean=True)

Transform normal distribution to U-quadratic distribution.

After this transformation, the field is U-quadratic-distributed on [a, b].

Parameters

- **fld** (*Field*) – Field class containing a generated field.
- **a** (*float*, optional) – Parameter a of the U-quadratic distribution (lower bound). Default: keep mean and variance
- **b** (*float*, optional) – Parameter b of the U-quadratic distribution (upper bound). Default: keep mean and variance
- **field** (*str*, optional) – Name of field to be transformed. The default is “field”.
- **store** (*str* or *bool*, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.
- **process** (*bool*, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- **keep_mean** (*bool*, optional) – Whether to keep the mean of the field if process=True. The default is True.

Returns  Transformed field.
Return type  *numpy.ndarray*
Apply function as field transformation.

Parameters

- `fld` (Field) – Field class containing a generated field.
- `function` (callable) – Function to use.
- `field` (str, optional) – Name of field to be transformed. The default is “field”.
- `store` (str or bool, optional) – Whether to store field inplace (True/False) or under a given name. The default is True.
- `process` (bool, optional) – Whether to process in/out fields with trend, normalizer and mean of given Field instance. The default is False.
- `keep_mean` (bool, optional) – Whether to keep the mean of the field if process=True. The default is True.
- `**kwargs` – Keyword arguments forwarded to given function.

Raises `ValueError` – When function is not callable.

Returns Transformed field.

Return type `numpy.ndarray`
ing values * “equal”: devide the field into equal parts * an array of explicitly given
thresholds Default: “arithmetic”

- **mean (float `or :any:`None) – Mean of the field for “equal” thresholds. De-
default: np.mean(field)
- **var (float `or :any:`None) – Variance of the field for “equal” thresholds. De-
default: np.var(field)

Returns Transformed field.

Return type numpy.ndarray

gstools.transform.array_boxcox
gstools.transform.array_boxcox (field, lmbda=1, shift=0)
(Inverse) Box-Cox transformation to denormalize data.

After this transformation, the again Box-Cox transformed field is normal distributed.

See: https://en.wikipedia.org/wiki/Power_transform#Box%E2%80%93Cox_transformation

Parameters

- **field (numpy.ndarray) – Normal distributed values.
- **lmbda (float, optional) – The lambda parameter of the Box-Cox transformation. For
  lmbda=0 one obtains the log-normal transformation. Default: 1
- **shift (float, optional) – The shift parameter from the two-parametric Box-Cox
  transformation. The field will be shifted by that value before transformation. Default: 0

gstools.transform.array_zinnharvey
gstools.transform.array_zinnharvey (field, conn=’high’, mean=None, var=None)
Zinn and Harvey transformation to connect low or high values.

Parameters

- **field (numpy.ndarray) – Normal distributed values.
- **conn (str, optional) – Desired connectivity. Either “low” or “high”. Default: “high”
- **mean (float or None, optional) – Mean of the given field. If None is given, the mean
  will be calculated. Default: None
- **var (float or None, optional) – Variance of the given field. If None is given, the
  variance will be calculated. Default: None

Returns Transformed field.

Return type numpy.ndarray

gstools.transform.array_force_moments
gstools.transform.array_force_moments (field, mean=0, var=1)
Force moments of a normal distributed field.

Parameters

- **field (numpy.ndarray) – Normal distributed values.
- **mean (float, optional) – Desired mean of the field. Default: 0
- **var (float or None, optional) – Desired variance of the field. Default: 1

Returns Transformed field.
### gstools.transform.array_to_lognormal

Transform normal distribution to log-normal distribution.

**Parameters**

- **field** (*numpy.ndarray*) – Normal distributed values.

**Returns**

Transformed field.

**Return type**

*numpy.ndarray*

### gstools.transform.array_to_uniform

Transform normal distribution to uniform distribution on [0, 1].

**Parameters**

- **field** (*numpy.ndarray*) – Normal distributed values.
- **mean** (*float* or *None*, optional) – Mean of the given field. If None is given, the mean will be calculated. Default: *None*
- **var** (*float* or *None*, optional) – Variance of the given field. If None is given, the variance will be calculated. Default: *None*

**Returns**

Transformed field.

**Return type**

*numpy.ndarray*

### gstools.transform.array_to_arcsin

Transform normal distribution to arcsin distribution.

See: https://en.wikipedia.org/wiki/Arcsine_distribution

**Parameters**

- **field** (*numpy.ndarray*) – Normal distributed values.
- **mean** (*float* or *None*, optional) – Mean of the given field. If None is given, the mean will be calculated. Default: *None*
- **var** (*float* or *None*, optional) – Variance of the given field. If None is given, the variance will be calculated. Default: *None*
- **a** (*float*, optional) – Parameter a of the arcsin distribution (lower bound). Default: keep mean and variance
- **b** (*float*, optional) – Parameter b of the arcsin distribution (upper bound). Default: keep mean and variance

**Returns**

Transformed field.

**Return type**

*numpy.ndarray*
**gstools.transform.array_to_uquad**

Transform normal distribution to U-quadratic distribution.


**Parameters**

- **field** (numpy.ndarray) – Normal distributed values.
- **mean** (float or None, optional) – Mean of the given field. If None is given, the mean will be calculated. Default: None
- **var** (float or None, optional) – Variance of the given field. If None is given, the variance will be calculated. Default: None
- **a** (float, optional) – Parameter a of the U-quadratic distribution (lower bound). Default: keep mean and variance
- **b** (float, optional) – Parameter b of the U-quadratic distribution (upper bound). Default: keep mean and variance

**Returns** Transformed field.

**Return type** numpy.ndarray
3.13 gstools.normalizer

GStools subpackage providing normalization routines.

**Base-Normalizer**

```python
class Normalizer(data=None, **parameter)
 Normalizer class.
```

Parameters
- **data** (*array_like*, *optional*) – Input data to fit the transformation to in order to gain normality. The default is None.

**Attributes**
- **name** *str*: The name of the normalizer class.

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>denormalize(data)</code></td>
<td>Transform to input distribution.</td>
</tr>
<tr>
<td><code>derivative(data)</code></td>
<td>Factor for normal PDF to gain target PDF.</td>
</tr>
<tr>
<td><code>fit(data[, skip])</code></td>
<td>Fitting the transformation to data by maximizing Log-Likelihood.</td>
</tr>
<tr>
<td><code>kernel_loglikelihood(data)</code></td>
<td>Kernel Log-Likelihood for given data with current parameters.</td>
</tr>
<tr>
<td><code>likelihood(data)</code></td>
<td>Likelihood for given data with current parameters.</td>
</tr>
<tr>
<td><code>loglikelihood(data)</code></td>
<td>Log-Likelihood for given data with current parameters.</td>
</tr>
<tr>
<td><code>normalize(data)</code></td>
<td>Transform to normal distribution.</td>
</tr>
</tbody>
</table>

### denormalize(data)

Transform to input distribution.

**Parameters**
- **data** (*array_like*) – Input data (normal distributed).

**Returns**
- Denormalized data.

**Return type**
- `numpy.ndarray`

### derivative(data)

Factor for normal PDF to gain target PDF.

**Parameters**
- **data** (*array_like*) – Input data (not normal distributed).

**Returns**
- Derivative of the normalization transformation function.

**Return type**
- `numpy.ndarray`

### fit(data, skip=0, **kwargs)

Fitting the transformation to data by maximizing Log-Likelihood.
Parameters

- **data** *(array_like)* – Input data to fit the transformation to in order to gain normality.
- **skip** *(list of str or None, optional)* – Names of parameters to be skipped in fitting. The default is None.
- ****kwargs – Keyword arguments passed to `scipy.optimize.minimize_scalar` when only one parameter present or `scipy.optimize.minimize`.

**Returns**
Optimal parameters given by names.

**Return type**
dict

**kernel_loglikelihood** *(data)*
Kernel Log-Likelihood for given data with current parameters.

**Parameters**
- **data** *(array_like)* – Input data to fit the transformation to in order to gain normality.

**Returns**
Kernel Log-Likelihood of the given data.

**Return type**
float

**Notes**
This loglikelihood function is neglecting additive constants, that are not needed for optimization.

**likelihood** *(data)*
Likelihood for given data with current parameters.

**Parameters**
- **data** *(array_like)* – Input data to fit the transformation to in order to gain normality.

**Returns**
Likelihood of the given data.

**Return type**
float

**loglikelihood** *(data)*
Log-Likelihood for given data with current parameters.

**Parameters**
- **data** *(array_like)* – Input data to fit the transformation to in order to gain normality.

**Returns**
Log-Likelihood of the given data.

**Return type**
float

**normalize** *(data)*
Transform to normal distribution.

**Parameters**
- **data** *(array_like)* – Input data (not normal distributed).

**Returns**
Normalized data.

**Return type**
numpy.ndarray

**default_parameter** = {}  
Default parameters of the Normalizer.

**Type**
dict

**denormalize_range** = (-inf, inf)  
Valid range for output/normal data.

**Type**
tuple
property name
   The name of the normalizer class.
   Type str

normalize_range = (-inf, inf)
   Valid range for input data.
   Type tuple
Field-Normalizer

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogNormal([data])</td>
<td>Log-normal fields.</td>
</tr>
<tr>
<td>BoxCox([data])</td>
<td>Box-Cox (1964) transformed fields.</td>
</tr>
<tr>
<td>BoxCoxShift([data])</td>
<td>Box-Cox (1964) transformed fields including shifting.</td>
</tr>
<tr>
<td>YeoJohnson([data])</td>
<td>Yeo-Johnson (2000) transformed fields.</td>
</tr>
<tr>
<td>Modulus([data])</td>
<td>Modulus or John-Draper (1980) transformed fields.</td>
</tr>
<tr>
<td>Manly([data])</td>
<td>Manly (1971) transformed fields.</td>
</tr>
</tbody>
</table>

```python
class gstools.normalizer.LogNormal(data=None, **parameter)
 Bases: gstools.normalizer.base.Normalizer

Log-normal fields.

Notes
This parameter-free transformation is given by:

\[y = \log(x) \]

Attributes

- **name** str: The name of the normalizer class.

Methods

- denormalize(data) Transform to input distribution.
- derivative(data) Factor for normal PDF to gain target PDF.
- fit(data[, skip]) Fitting the transformation to data by maximizing Log-Likelihood.
- kernel_loglikelihood(data) Kernel Log-Likelihood for given data with current parameters.
- likelihood(data) Likelihood for given data with current parameters.
- loglikelihood(data) Log-Likelihood for given data with current parameters.
- normalize(data) Transform to normal distribution.

```
**fit** *(data, skip=None, **kwargs)*
Fitting the transformation to data by maximizing Log-Likelihood.

**Parameters**

- **data** *(array_like)* – Input data to fit the transformation to in order to gain normality.
- **skip** *(list of str or None, optional)* – Names of parameters to be skipped in fitting. The default is None.
- **kwargs** – Keyword arguments passed to *scipy.optimize.minimize_scalar* when only one parameter present or *scipy.optimize.minimize*.

**Returns**
Optimal parameters given by names.

**Return type**
*dict*

**kernel_loglikelihood** *(data)*
Kernel Log-Likelihood for given data with current parameters.

**Parameters**

- **data** *(array_like)* – Input data to fit the transformation to in order to gain normality.

**Returns**
Kernel Log-Likelihood of the given data.

**Return type**
*float*

**Notes**
This loglikelihood function is neglecting additive constants, that are not needed for optimization.

**likelihood** *(data)*
Likelihood for given data with current parameters.

**Parameters**

- **data** *(array_like)* – Input data to fit the transformation to in order to gain normality.

**Returns**
Likelihood of the given data.

**Return type**
*float*

**loglikelihood** *(data)*
Log-Likelihood for given data with current parameters.

**Parameters**

- **data** *(array_like)* – Input data to fit the transformation to in order to gain normality.

**Returns**
Log-Likelihood of the given data.

**Return type**
*float*

**normalize** *(data)*
Transform to normal distribution.

**Parameters**

- **data** *(array_like)* – Input data (not normal distributed).

**Returns**
Normalized data.

**Return type**
*numarray*

**default_parameter** = *
Default parameters of the Normalizer.

**Type**
*dict*

**denormalize_range** = *(−inf, inf)*
Valid range for output/normal data.
Type `tuple`

**property name**
The name of the normalizer class.

Type `str`

`normalize_range = (0.0, inf)`
Valid range for input data.
class gstools.normalizer.BoxCox(data=None, **parameter)

Bases: gstools.normalizer.base.Normalizer

Box-Cox (1964) transformed fields.

Parameters

* data (array_like, optional) – Input data to fit the transformation in order to gain normality. The default is None.
* lmbda (float, optional) – Shape parameter. Default: 1

Notes

This transformation is given by [Box1964]:

$$y = \begin{cases} 
\frac{x^{\lambda} - 1}{\lambda} & \lambda \neq 0 \\
\log(x) & \lambda = 0 
\end{cases}$$

References

Attributes

* denormalize_range tuple: Valid range for output data depending on lmbda.
* name str: The name of the normalizer class.

Methods

* denormalize(data) Transform to input distribution.
* derivative(data) Factor for normal PDF to gain target PDF.
* fit(data[, skip]) Fitting the transformation to data by maximizing Log-Likelihood
* kernel_loglikelihood(data) Kernel Log-Likelihood for given data with current parameters.
* likelihood(data) Likelihood for given data with current parameters.
* loglikelihood(data) Log-Likelihood for given data with current parameters.
* normalize(data) Transform to normal distribution.

*denormalize(data)*

Transform to input distribution.

Parameters data (array_like) – Input data (normal distributed).

Returns Denormalized data.

Return type numpy.ndarray

derivative(data)

Factor for normal PDF to gain target PDF.

Parameters data (array_like) – Input data (not normal distributed).

Returns Derivative of the normalization transformation function.

Return type numpy.ndarray
**fit** (*data*, *skip=None, **kwargs*)

Fitting the transformation to data by maximizing Log-Likelihood.

**Parameters**

- *data* (*array_like*) – Input data to fit the transformation to in order to gain normality.
- *skip* (*list of str or None*, optional) – Names of parameters to be skipped in fitting. The default is None.
- **kwargs** – Keyword arguments passed to `scipy.optimize.minimize_scalar` when only one parameter present or `scipy.optimize.minimize`.

**Returns** Optimal parameters given by names.

**Return type** *dict*

**kernel_loglikelihood** (*data*)

Kernel Log-Likelihood for given data with current parameters.

**Parameters**

- *data* (*array_like*) – Input data to fit the transformation to in order to gain normality.

**Returns** Kernel Log-Likelihood of the given data.

**Return type** *float*

**Notes**

This loglikelihood function is neglecting additive constants, that are not needed for optimization.

**likelihood** (*data*)

Likelihood for given data with current parameters.

**Parameters**

- *data* (*array_like*) – Input data to fit the transformation to in order to gain normality.

**Returns** Likelihood of the given data.

**Return type** *float*

**loglikelihood** (*data*)

Log-Likelihood for given data with current parameters.

**Parameters**

- *data* (*array_like*) – Input data to fit the transformation to in order to gain normality.

**Returns** Log-Likelihood of the given data.

**Return type** *float*

**normalize** (*data*)

Transform to normal distribution.

**Parameters**

- *data* (*array_like*) – Input data (not normal distributed).

**Returns** Normalized data.

**Return type** *numpy.ndarray*

**default_parameter** = {'lmbda': 1}

Default parameter of the BoxCox-Normalizer.

**Type** *dict*
**property denormalize_range**
Valid range for output data depending on \( \lambda \).

\((-1/\lambda, \infty)\) or \((-\infty, -1/\lambda)\)

*Type* `tuple`

**property name**
The name of the normalizer class.

*Type* `str`

**normalize_range** = \((0.0, \infty)\)
Valid range for input data.

*Type* `tuple`
**gstools.normalizer.BoxCoxShift**

**class gstools.normalizer.BoxCoxShift**(data=None, **parameter)

Bases: gstools.normalizer.base.Normalizer

Box-Cox (1964) transformed fields including shifting.

**Parameters**

- **data** *(array_like, optional)* – Input data to fit the transformation in order to gain normality. The default is None.
- **lmbda** *(float, optional)* – Shape parameter. Default: 1
- **shift** *(float, optional)* – Shift parameter. Default: 0

**Notes**

This transformation is given by [Box1964]:

\[
\begin{align*}
y &= \begin{cases}
\frac{(x+s)^\lambda - 1}{\lambda} & \lambda \neq 0 \\
\log(x + s) & \lambda = 0
\end{cases}
\end{align*}
\]

Fitting the shift parameter is rather hard. You should consider skipping “shift” during fitting:

```python
>>> data = range(5)
>>> norm = BoxCoxShift(shift=0.5)
>>> norm.fit(data, skip=['shift'])
{'shift': 0.5, 'lmbda': 0.6747515267420799}
```

**References**

**Attributes**

- **denormalize_range** *(tuple)*: Valid range for output data depending on lmbda.
- **name** *(str)*: The name of the normalizer class.
- **normalize_range** *(tuple)*: Valid range for input data depending on shift.

**Methods**

- **denormalize**(data) – Transform to input distribution.
- **derivative**(data) – Factor for normal PDF to gain target PDF.
- **fit**(data[, skip]) – Fitting the transformation to data by maximizing Log-Likelihood.
- **kernel_loglikelihood**(data) – Kernel Log-Likelihood for given data with current parameters.
- **likelihood**(data) – Likelihood for given data with current parameters.
- **loglikelihood**(data) – Log-Likelihood for given data with current parameters.
- **normalize**(data) – Transform to normal distribution.

**denormalize**(data)

Transform to input distribution.

**Parameters**

- **data** *(array_like)* – Input data (normal distributed).

**Returns**

Denormalized data.
Return type: \texttt{numpy.ndarray}

def derivative\(\text{data}\):

Factor for normal PDF to gain target PDF.

Parameters:
\texttt{data} (\texttt{array_like}) -- Input data (not normal distributed).

Returns:
Derivative of the normalization transformation function.

Return type: \texttt{numpy.ndarray}

fit\(\text{data}, \text{skip=}\text{None}, **\text{kwargs}\):

Fitting the transformation to data by maximizing Log-Likelihood.

Parameters:
- \texttt{data} (\texttt{array_like}) -- Input data to fit the transformation to in order to gain normality.
- \texttt{skip} (\texttt{list} of \texttt{str} or \texttt{None}, optional) -- Names of parameters to be skipped in fitting. The default is None.
- \texttt{**\text{kwargs}} -- Keyword arguments passed to \texttt{scipy.optimize.minimize_scalar} when only one parameter present or \texttt{scipy.optimize.minimize}.

Returns:
Optimal parameters given by names.

Return type: \texttt{dict}

kernel_loglikelihood\(\text{data}\):

Kernel Log-Likelihood for given data with current parameters.

Parameters:
\texttt{data} (\texttt{array_like}) -- Input data to fit the transformation to in order to gain normality.

Returns:
Kernel Log-Likelihood of the given data.

Return type: \texttt{float}

Notes:
This loglikelihood function is neglecting additive constants, that are not needed for optimization.

likelihood\(\text{data}\):

Likelihood for given data with current parameters.

Parameters:
\texttt{data} (\texttt{array_like}) -- Input data to fit the transformation to in order to gain normality.

Returns:
Likelihood of the given data.

Return type: \texttt{float}

loglikelihood\(\text{data}\):

Log-Likelihood for given data with current parameters.

Parameters:
\texttt{data} (\texttt{array_like}) -- Input data to fit the transformation to in order to gain normality.

Returns:
Log-Likelihood of the given data.

Return type: \texttt{float}

normalize\(\text{data}\):

Transform to normal distribution.

Parameters:
\texttt{data} (\texttt{array_like}) -- Input data (not normal distributed).

Returns:
Normalized data.
Return type \texttt{numpy.ndarray}

default_parameter = {'\texttt{lmbda}': 1, '\texttt{shift}': 0}
Default parameters of the BoxCoxShift-Normalizer.

Type \texttt{dict}

property denormalize_range
Valid range for output data depending on \texttt{lmbda}.

\((-1/\texttt{lmbda}, \textit{inf})\) or \((-\textit{inf}, -1/\texttt{lmbda})\)

Type \texttt{tuple}

property name
The name of the normalizer class.

Type \texttt{str}

property normalize_range
Valid range for input data depending on \texttt{shift}.

\((-\texttt{shift}, \textit{inf})\)

Type \texttt{tuple}
Yeo-Johnson (2000) transformed fields.

**Parameters**

- `data` *(array_like, optional)* – Input data to fit the transformation in order to gain normality. The default is None.
- `lmbda` *(float, optional)* – Shape parameter. Default: 1

**Notes**

This transformation is given by [Yeo2000]:

\[
y = \begin{cases} 
\frac{(x+1)^{\lambda} - 1}{\lambda} & x \geq 0, \lambda \neq 0 \\
\log(x + 1) & x \geq 0, \lambda = 0 \\
\frac{(x+1)^{2/\lambda} - 1}{2/\lambda} & x < 0, \lambda \neq 2 \\
-\log(|x| + 1) & x < 0, \lambda = 2 
\end{cases}
\]

**References**

Attributes

- `name` *str*: The name of the normalizer class.

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>denormalize(data)</code></td>
<td>Transform to input distribution.</td>
</tr>
<tr>
<td><code>derivative(data)</code></td>
<td>Factor for normal PDF to gain target PDF.</td>
</tr>
<tr>
<td><code>fit(data[, skip])</code></td>
<td>Fitting the transformation to data by maximizing Log-Likelihood.</td>
</tr>
<tr>
<td><code>kernel_loglikelihood(data)</code></td>
<td>Kernel Log-Likelihood for given data with current parameters.</td>
</tr>
<tr>
<td><code>likelihood(data)</code></td>
<td>Likelihood for given data with current parameters.</td>
</tr>
<tr>
<td><code>loglikelihood(data)</code></td>
<td>Log-Likelihood for given data with current parameters.</td>
</tr>
<tr>
<td><code>normalize(data)</code></td>
<td>Transform to normal distribution.</td>
</tr>
</tbody>
</table>

**denormalize(data)**

Transform to input distribution.

- **Parameters** `data` *(array_like)* – Input data (normal distributed).
- **Returns** Denormalized data.
- **Return type** `numpy.ndarray`

**derivative(data)**

Factor for normal PDF to gain target PDF.

- **Parameters** `data` *(array_like)* – Input data (not normal distributed).
- **Returns** Derivative of the normalization transformation function.
- **Return type** `numpy.ndarray`
**fit** (*data, skip=None, **kwargs*)

Fitting the transformation to data by maximizing Log-Likelihood.

**Parameters**

- **data** (*array_like*) – Input data to fit the transformation to in order to gain normality.
- **skip** (*list of str or None, optional*) – Names of parameters to be skipped in fitting. The default is None.
- **kwargs** – Keyword arguments passed to `scipy.optimize.minimize_scalar` when only one parameter present or `scipy.optimize.minimize`.

**Returns**
Optimal parameters given by names.

**Return type**
dict

**kernel_loglikelihood** (*data*)

Kernel Log-Likelihood for given data with current parameters.

**Parameters**
-* data (*array_like*) – Input data to fit the transformation to in order to gain normality.

**Returns**
Kernel Log-Likelihood of the given data.

**Return type**
float

**Notes**
This loglikelihood function is neglecting additive constants, that are not needed for optimization.

**likelihood** (*data*)

Likelihood for given data with current parameters.

**Parameters**
-* data (*array_like*) – Input data to fit the transformation to in order to gain normality.

**Returns**
Likelihood of the given data.

**Return type**
float

**loglikelihood** (*data*)

Log-Likelihood for given data with current parameters.

**Parameters**
-* data (*array_like*) – Input data to fit the transformation to in order to gain normality.

**Returns**
Log-Likelihood of the given data.

**Return type**
float

**normalize** (*data*)

Transform to normal distribution.

**Parameters**
-* data (*array_like*) – Input data (not normal distributed).

**Returns**
Normalized data.

**Return type**
numpy.ndarray

**default_parameter** = {'lmbda': 1}

Default parameter of the YeoJohnson-Normalizer.

**Type**
dict

**denormalize_range** = (-inf, inf)

Valid range for output/normal data.
Type `tuple`

**property name**
The name of the normalizer class.

Type `str`

`normalize_range = (-inf, inf)`
Valid range for input data.

Type `tuple`
gstools.normalizer.Modulus

class gstools.normalizer.Modulus(data=None, **parameter)
   Bases: gstools.normalizer.base.Normalizer

Modulus or John-Draper (1980) transformed fields.

Parameters
   - data (array_like, optional) – Input data to fit the transformation in order to
     gain normality. The default is None.
   - lamda (float, optional) – Shape parameter. Default: 1

Notes
This transformation is given by [John1980]:

\[
y = \begin{cases} 
\text{sgn}(x)\frac{|x|+1}{\lambda} & \lambda \neq 0 \\
\text{sgn}(x) \log(|x| + 1) & \lambda = 0 
\end{cases}
\]

References

Attributes
   name str: The name of the normalizer class.

Methods

denormalize(data) Transform to input distribution.
derivative(data) Factor for normal PDF to gain target PDF.
fit(data[, skip]) Fitting the transformation to data by maximizing
Log-Likelihood.
kernel_loglikelihood(data) Kernel Log-Likelihood for given data with current
parameters.
likelihood(data) Likelihood for given data with current parameters.
loglikelihood(data) Log-Likelihood for given data with current param-
eters.
normalize(data) Transform to normal distribution.

denormalize(data)
   Transform to input distribution.

Parameters data (array_like) – Input data (normal distributed).

Returns Denormalized data.

Return type numpy.ndarray
derivative(data)
   Factor for normal PDF to gain target PDF.

Parameters data (array_like) – Input data (not normal distributed).

Returns Derivative of the normalization transformation function.

Return type numpy.ndarray

fit(data, skip=None, **kwargs)
   Fitting the transformation to data by maximizing Log-Likelihood.
Parameters

- **data** (*array_like*) – Input data to fit the transformation to in order to gain normality.
- **skip** (*list of str or None, optional*) – Names of parameters to be skipped in fitting. The default is None.
- ****kwargs – Keyword arguments passed to `scipy.optimize.minimize_scalar` when only one parameter present or `scipy.optimize.minimize`.

Returns
Optimal parameters given by names.

Return type
`dict`

**kernel_loglikelihood**(data)
Kernel Log-Likelihood for given data with current parameters.

Parameters
**data** (*array_like*) – Input data to fit the transformation to in order to gain normality.

Returns
Kernel Log-Likelihood of the given data.

Return type
`float`

Notes
This loglikelihood function is neglecting additive constants, that are not needed for optimization.

**likelihood**(data)
Likelihood for given data with current parameters.

Parameters
**data** (*array_like*) – Input data to fit the transformation to in order to gain normality.

Returns
Likelihood of the given data.

Return type
`float`

**loglikelihood**(data)
Log-Likelihood for given data with current parameters.

Parameters
**data** (*array_like*) – Input data to fit the transformation to in order to gain normality.

Returns
Log-Likelihood of the given data.

Return type
`float`

**normalize**(data)
Transform to normal distribution.

Parameters
**data** (*array_like*) – Input data (not normal distributed).

Returns
Normalized data.

Return type
`numpy.ndarray`

**default_parameter** = {‘lmbda’: 1}
Default parameter of the Modulus-Normalizer.

Type
`dict`

**denormalize_range** = (-inf, inf)
Valid range for output/normal data.

Type
`tuple`
property name
The name of the normalizer class.

    Type str

normalize_range = (-inf, inf)
Valid range for input data.

    Type tuple
**gstools.normalizer.Manly**

**class** `gstools.normalizer.Manly(data=None, **parameter)`

Bases: `gstools.normalizer.base.Normalizer`

Manly (1971) transformed fields.

**Parameters**

- `data` *(array_like, optional)* – Input data to fit the transformation in order to gain normality. The default is None.
- `lmbda` *(float, optional)* – Shape parameter. Default: 1

**Notes**

This transformation is given by [Manly1976]:

\[ y = \begin{cases} \exp(\lambda x) - 1 & \lambda \neq 0 \\ x & \lambda = 0 \end{cases} \]

**References**

**Attributes**

- `denormalize_range` *(tuple)*: Valid range for output data depending on lmbda.
- `name` *(str)*: The name of the normalizer class.

**Methods**

- `denormalize(data)` Transform to input distribution.
- `derivative(data)` Factor for normal PDF to gain target PDF.
- `fit(data[, skip])` Fitting the transformation to data by maximizing Log-Likelihood.
- `kernel_loglikelihood(data)` Kernel Log-Likelihood for given data with current parameters.
- `likelihood(data)` Likelihood for given data with current parameters.
- `loglikelihood(data)` Log-Likelihood for given data with current parameters.
- `normalize(data)` Transform to normal distribution.

**denormalize(data)**

Transform to input distribution.

- **Parameters** `data` *(array_like)* – Input data (normal distributed).
- **Returns** Denormalized data.
- **Return type** `numpy.ndarray`

**derivative(data)**

Factor for normal PDF to gain target PDF.

- **Parameters** `data` *(array_like)* – Input data (not normal distributed).
- **Returns** Derivative of the normalization transformation function.
- **Return type** `numpy.ndarray`
**fit**(data, skip=None, **kwargs)
Fitting the transformation to data by maximizing Log-Likelihood.

**Parameters**
- **data** *(array_like)* – Input data to fit the transformation to in order to gain normality.
- **skip** *(list of str or None, optional)* – Names of parameters to be skipped in fitting. The default is None.
- **kwargs** – Keyword arguments passed to `scipy.optimize.minimize_scalar` when only one parameter present or `scipy.optimize.minimize`.

**Returns**
Optimal parameters given by names.

**Return type**
dict

**kernel_loglikelihood**(data)
Kernel Log-Likelihood for given data with current parameters.

**Parameters**
data *(array_like)* – Input data to fit the transformation to in order to gain normality.

**Returns**
Kernel Log-Likelihood of the given data.

**Return type**
float

**Notes**
This loglikelihood function is neglecting additive constants, that are not needed for optimization.

**likelihood**(data)
Likelihood for given data with current parameters.

**Parameters**
data *(array_like)* – Input data to fit the transformation to in order to gain normality.

**Returns**
Likelihood of the given data.

**Return type**
float

**loglikelihood**(data)
Log-Likelihood for given data with current parameters.

**Parameters**
data *(array_like)* – Input data to fit the transformation to in order to gain normality.

**Returns**
Log-Likelihood of the given data.

**Return type**
float

**normalize**(data)
Transform to normal distribution.

**Parameters**
data *(array_like)* – Input data (not normal distributed).

**Returns**
Normalized data.

**Return type**
numpy.ndarray

**default_parameter** = {'lmbda': 1}
Default parameter of the Manly-Normalizer.

**Type**
dict
property denormalize_range
Valid range for output data depending on \( \lambda \).
\((-1/\lambda, \infty)\) or \((-\infty, -1/\lambda)\)

Type tuple

property name
The name of the normalizer class.

Type str

normalize_range = (-\infty, \infty)
Valid range for input data.

Type tuple
Convenience Routines

\begin{verbatim}
apply_mean_norm_trend(pos, field[, mean, ...
Remove trend, de-normalization and mean from given field.
\end{verbatim}

\begin{verbatim}
gstools.normalizer.apply_mean_norm_trend

Apply mean, de-normalization and trend to given field.

Parameters

- \texttt{pos} \texttt{(iterable)} – Position tuple, containing main direction and transversal directions.
- \texttt{field} \texttt{(numpy.ndarray or list of numpy.ndarray)} – The spatially distributed data. You can pass a list of fields, that will be used simultaneously. Then you need to set \texttt{stacked=True}.
- \texttt{mean} \texttt{(None or float or callable, optional)} – Mean of the field if wanted. Could also be a callable. The default is None.
- \texttt{normalizer} \texttt{(None or Normalizer, optional)} – Normalizer to be applied to the field. The default is None.
- \texttt{trend} \texttt{(None or float or callable, optional)} – Trend of the denormalized fields. If no normalizer is applied, this behaves equal to ‘mean’. The default is None.
- \texttt{mesh_type} \texttt{(str, optional)} – ‘structured’ / ‘unstructured’ Default: ‘unstructured’
- \texttt{value_type} \texttt{(str, optional)} – Value type of the field. Either “scalar” or “vector”. The default is “scalar”.
- \texttt{check_shape} \texttt{(bool, optional)} – Wheather to check pos and field shapes. The default is True.
- \texttt{stacked} \texttt{(bool, optional)} – Wheather the field is stacked or not. The default is False.

Returns \texttt{field} – The transformed field.

Return type \texttt{numpy.ndarray}

\begin{verbatim}
gstools.normalizer.remove_trend_norm_mean

Remove trend, de-normalization and mean from given field.

Parameters

- \texttt{pos} \texttt{(iterable)} – Position tuple, containing main direction and transversal directions.
- \texttt{field} \texttt{(numpy.ndarray or list of numpy.ndarray)} – The spatially distributed data. You can pass a list of fields, that will be used simultaneously. Then you need to set \texttt{stacked=True}.
\end{verbatim}
• **mean** (*None or float or callable*, optional) – Mean of the field if wanted. Could also be a callable. The default is None.

• **normalizer** (*None or Normalizer*, optional) – Normalizer to be applied to the field. The default is None.

• **trend** (*None or float or callable*, optional) – Trend of the denormalized fields. If no normalizer is applied, this behaves equal to ‘mean’. The default is None.

• **mesh_type** (*str*, optional) – ‘structured’ / ‘unstructured’ Default: ‘unstructured’

• **value_type** (*str*, optional) – Value type of the field. Either “scalar” or “vector”. The default is “scalar”.

• **check_shape** (*bool*, optional) – Wheather to check pos and field shapes. The default is True.

• **stacked** (*bool*, optional) – Wheather the field is stacked or not. The default is False.

• **fit_normalizer** (*bool*, optional) – Wheater to fit the data-normalizer to the given (detrended) field. Default: False

Returns

• **field** (*numpy.ndarray*) – The cleaned field.

• **normalizer** (*Normalizer*, optional) – The fitted normalizer for the given data. Only provided if *fit_normalizer* is True.
All notable changes to GSTools will be documented in this file.

4.1 1.3.4 - Pure Pink - 2021-11

Enhancements

• add GSTools-Core as optional dependency #215
• provide wheels for Python 3.10 #211
• provide macOS wheels for Apple Silicon #211

Changes

• remove unnecessary dim argument in Cython code #216

4.2 1.3.3 - Pure Pink - 2021-08

Enhancements

See: #197

• gstools.transform:
  – add keywords field, store, process and keep_mean to all transformations to control storage and respect normalizer
  – added apply_function transformation
  – added apply as wrapper for all transformations
  – added transform method to all Field (sub)classes as interface to transform.apply
  – added checks for normal fields to work smoothly with recently added normalizer submodule

• Field:
  – allow naming fields when generating and control storage with store keyword
  – all subclasses now have the post_process keyword (apply mean, normalizer, trend)
– added subscription to access fields by name (Field["field"])
– added `set_pos` method to set position tuple
– allow reusing present pos tuple
– added `pos, mesh_type, field_names, field_shape, all_fields` properties

• **CondSRF:**
  – memory optimization by forwarding `pos` from underlying `krige` instance
  – only recalculate kriging field if `pos` tuple changed (optimized ensemble generation)
• performance improvement by using `np.asarray` instead of `np.array` where possible
• updated examples to use new features
• added incomplete lower gamma function `inc_gamma_low` (for TPLGaussian spectral density)
• filter `nan` values from `cond_val` array in all kriging routines #201

**Bugfixes**

• `inc_gamma` was defined wrong for integer `s < 0`

### 4.3 1.3.2 - Pure Pink - 2021-07

**Bugfixes**

• `vario_estimate` was altering the input field under certain circumstances #180
• `emcee v3.1` now requires `nsteps` in `run_mcmc()` to be integer (called in `RNG.sample_ln_pdf`) #184

### 4.4 1.3.1 - Pure Pink - 2021-06

**Enhancements**

• Standalone use of Field class #166
• add social badges in README #169, #170

**Bugfixes**

• use `oldest-supported-numpy` to build cython extensions #165

### 4.5 1.3.0 - Pure Pink - 2021-04

**Topics**

**Geographical Coordinates Support (#113)**

• added boolean init parameter `latlon` to indicate a geographic model. When given, spatial dimension is fixed to `dim=3`, `anis` and `angles` will be ignored, since anisotropy is not well-defined on a sphere.
• add property `field_dim` to indicate the dimension of the resulting field. Will be 2 if `latlon=True`
• added yadrenko variogram, covariance and correlation method, since the geographic models are derived from standard models in 3D by plugging in the chordal distance of two points on a sphere derived from there great-circle distance $\zeta$:

  - `vario_yadrenko`: given by `variogram(2 * np.sin(zeta / 2))`
  - `cov_yadrenko`: given by `covariance(2 * np.sin(zeta / 2))`
  - `cor_yadrenko`: given by `correlation(2 * np.sin(zeta / 2))`

• added plotting routines for yadrenko methods described above

• the `isometrize` and `anisometrize` methods will convert `latlon` tuples (given in degree) to points on the unit-sphere in 3D and vice versa

• representation of geographical models don’t display the `dim`, `anis` and `angles` parameters, but `latlon=True`

• `fit_variogram` will expect an estimated variogram with great-circle distances given in radians

• **Variogram estimation**
  - `latlon` switch implemented in `estimate_vario` routine
  - will return a variogram estimated by the great-circle distance (haversine formula) given in radians

• **Field**
  - added plotting routines for `latlon` fields
  - no vector fields possible on `latlon` fields
  - correctly handle `pos` tuple for `latlon` fields

**Krige Unification (#97)**

• Swiss Army Knife for kriging: The `Krige` class now provides everything in one place

• “Kriging the mean” is now possible with the switch `only_mean` in the call routine

• `Simple/Ordinary/Universal/ExtDrift/Detrended` are only shortcuts to `Krige` with limited input parameter list

• We now use the `covariance` function to build up the kriging matrix (instead of variogram)

• An `unbiased` switch was added to enable simple kriging (where the unbiased condition is not given)

• An `exact` switch was added to allow smoother results, if a `nugget` is present in the model

• An `cond_err` parameter was added, where measurement error variances can be given for each conditional point

• pseudo-inverse matrix is now used to solve the kriging system (can be disabled by the new switch `pseudo_inv`), this is equal to solving the system with least-squares and prevents numerical errors

• added options `fit_normalizer` and `fit_variogram` to automatically fit normalizer and variogram to given data
Directional Variograms and Auto-binning (#87, #106, #131)

- New routine name `vario_estimate` instead of `vario_estimate_unstructured` (old kept for legacy code) for simplicity
- New routine name `vario_estimate_axis` instead of `vario_estimate_structured` (old kept for legacy code) for simplicity
- `vario_estimate`  
  - Added simple automatic binning routine to determine bins from given data (one third of box diameter as max bin distance, Sturges rule for number of bins)
  - Allow to pass multiple fields for joint variogram estimation (e.g. for daily precipitation) on same mesh
  - `no_data` option added to allow missing values
- Masked fields
  - User can now pass a masked array (or a list of masked arrays) to deselect data points.
  - In addition, a `mask` keyword was added to provide an external mask
- Directional variograms
  - Directional variograms can now be estimated
  - Either provide a list of direction vectors or angles for directions (spherical coordinates)
  - Can be controlled by given angle tolerance and (optional) bandwidth
  - Prepared for nD
  - Structured fields (pos tuple describes axes) can now be passed to estimate an isotropic or directional variogram
  - Distance calculation in cython routines in now independent of dimension
- `vario_estimate_axis`
  - Estimation along array axis now possible in arbitrary dimensions
  - `no_data` option added to allow missing values (solves #83)
  - Axis can be given by name ("x", "y", "z") or axis number (0, 1, 2, 3, …)

Better Variogram fitting (#78, #145)

- Fixing sill possible now
- Loss is now selectable for smoother handling of outliers
- R2 score can now be returned to get an impression of the goodness of fitting
- Weights can be passed
- Instead of deselecting parameters, one can also give fix values for each parameter
- Default init guess for `len_scale` is now mean of given bin-centers
- Default init guess for `var` and `nugget` is now mean of given variogram values
CovModel update (#109, #122, #157)

- add new rescale argument and attribute to the CovModel class to be able to rescale the len_scale (useful for unit conversion or rescaling len_scale to coincide with the integral_scale like it’s the case with the Gaussian model) See: #90, GeoStat-Framework/PyKrige#119
- added new len_rescaled attribute to the CovModel class, which is the rescaled len_scale:
  \[ \text{len_rescaled} = \text{len}_\text{scale} / \text{rescale} \]
- new method default_rescale to provide default rescale factor (can be overridden)
- remove doctest calls
- docstring updates in CovModel and derived models
- updated all models to use the cor routine and make use of the rescale argument (See: #90)
- TPL models got a separate base class to not repeat code
- added new models (See: #88):
  - HyperSpherical: (Replaces the old Intersection model) Derived from the intersection of hyper-spheres in arbitrary dimensions. Coincides with the linear model in 1D, the circular model in 2D and the classical spherical model in 3D
  - SuperSpherical: like the HyperSpherical, but the shape parameter derived from dimension can be set by the user. Coincides with the HyperSpherical model by default
  - JBessel: a hole model valid in all dimensions. The shape parameter controls the dimension it was derived from. For nu=0.5 this model coincides with the well known wave hole model.
  - TPLSimple: a simple truncated power law controlled by a shape parameter nu. Coincides with the truncated linear model for nu=1
  - Cubic: to be compatible with scikit-gstat in the future
- all arguments are now stored as float internally (#157)
- string representation of the CovModel class is now using a float precision (CovModel._prec=3) to truncate longish output
- string representation of the CovModel class now only shows anis and angles if model is anisotropic resp. rotated
- dimension validity check: raise a warning, if given model is not valid in the desired dimension (See: #86)

Normalizer, Trend and Mean (#124)

- new normalize submodule containing power-transforms for data to gain normality
- Base-Class: Normalizer providing basic functionality including maximum likelihood fitting
- added: LogNormal, BoxCox, BoxCoxShift, YeoJohnson, Modulus and Manly
- normalizer, trend and mean can be passed to SRF, Krige and variogram estimation routines
  - A trend can be a callable function, that represents a trend in input data. For example a linear decrease of temperature with height.
  - The normalizer will be applied after the data was detrended, i.e. the trend was substracted from the data, in order to gain normality.
  - The mean is now interpreted as the mean of the normalized data. The user could also provide a callable mean, but it is mostly meant to be constant.
Arbitrary dimensions (#112)

- allow arbitrary dimensions in all routines (CovModel, Krige, SRF, variogram)
- anisotropy and rotation following a generalization of tait-bryan angles
- CovModel provides isometrize and anisometrize routines to convert points

New Class for Conditioned Random Fields (#130)

- THIS BREAKS BACKWARD COMPATIBILITY
- CondSRF replaces the conditioning feature of the SRF class, which was cumbersome and limited to Ordinary and Simple kriging
- CondSRF behaves similar to the SRF class, but instead of a covariance model, it takes a kriging class as input. With this kriging class, all conditioning related settings are defined.

Enhancements

- Python 3.9 Support #107
- add routines to format struct. pos tuple by given dim or shape
- add routine to format struct. pos tuple by given shape (variogram helper)
- remove field.tools subpackage
- support meshio>=4.0 and add as dependency
- PyVista mesh support #59
- added EARTH_RADIUS as constant providing earths radius in km (can be used to rescale models)
- add routines latlon2pos and pos2latlon to convert lat-lon coordinates to points on unit-sphere and vice versa
- a lot of new examples and tutorials
- RandMeth class got a switch to select the sampling strategy
- plotter for n-D fields added #141
- antialias for contour plots of 2D fields #141
- building from source is now configured with pyproject.toml to care about build dependencies, see #154

Changes

- drop support for Python 3.5 #146
- added a finit limit for shape-parameters in some CovModels #147
- drop usage of pos2xyz and xyz2pos
- remove structured option from generators (structured pos need to be converted first)
- explicitly assert dim=2,3 when generating vector fields
- simplify pre_pos routine to save pos tuple and reformat it an unstructured tuple
- simplify field shaping
- simplify plotting routines
- only the "unstructured" keyword is recognized everywhere, everything else is interpreted as "structured" (e.g. "rectilinear")
• use GitHub-Actions instead of TravisCI
• parallel build now controlled by env-var `GSTOOLS_BUILD_PARALLEL=1`, see #154
• install extra target for [dev] dropped, can be reproduced by `pip install gstools[test, doc]`, see #154

**Bugfixes**

• typo in keyword argument for `vario_estimate_structured` #80
• isotropic rotation of SRF was not possible #100
• `CovModel.opt_arg` now sorted #103
• `CovModel.fit` check if weights are given as a string (numpy comparison error) #111
• several pylint fixes (#159)

### 4.6 1.2.1 - Volatile Violet - 2020-04-14

**Bugfixes**

• `ModuleNotFoundError` is not present in py35
• Fixing Cressie-Bug #76
• Adding analytical formula for integral scales of rational and stable model
• remove prange from IncomprRandMeth summators to prevent errors on Win and macOS

### 4.7 1.2.0 - Volatile Violet - 2020-03-20

**Enhancements**

• different variogram estimator functions can now be used #51
• the TPLGaussian and TPLExponential now have analytical spectra #67
• added property `is_isotropic` to CovModel #67
• reworked the whole kriging sub-module to provide multiple kriging methods #67
  – Simple
  – Ordinary
  – Universal
  – External Drift Kriging
  – Detrended Kriging
• a new transformation function for discrete fields has been added #70
• reworked tutorial section in the documentation #63
• pyvista interface #29
Changes

- Python versions 2.7 and 3.4 are no longer supported #40 #43
- CovModel: in 3D the input of anisotropy is now treated slightly different: #67
  - single given anisotropy value [e] is converted to [1, e] (it was [e, e] before)
  - two given length-scales [l_1, l_2] are converted to [l_1, l_2, l_2] (it was [l_1, l_2, l_1] before)

Bugfixes

- a race condition in the structured variogram estimation has been fixed #51

4.8 1.1.1 - Reverberating Red - 2019-11-08

Enhancements

- added a changelog. See: commit fbea883

Changes

- deprecation warnings are now printed if Python versions 2.7 or 3.4 are used #40 #41

Bugfixes

- define spectral_density instead of spectrum in covariance models since Cov-base derives spectrum. See: commit 00f2747
- better boundaries for CovModel parameters. See: https://github.com/GeoStat-Framework/GSTools/issues/37

4.9 1.1.0 - Reverberating Red - 2019-10-01

Enhancements

- by using Cython for all the heavy computations, we could achieve quite some speed ups and reduce the memory consumption significantly #16
- parallel computation in Cython is now supported with the help of OpenMP and the performance increase is nearly linear with increasing cores #16
- new submodule krigc providing simple (known mean) and ordinary (estimated mean) kriging working analogous to the srf class
- interface to pykrige to use the gstools CovModel with the pykrige routines (https://github.com/bsmurphy/PyKrige/issues/124)
- the srf class now provides a plot and a vtk_export routine
- incompressible flow fields can now be generated #14
- new submodule providing several field transformations like: Zinn&Harvey, log-normal, bimodal, … #13
- Python 3.4 and 3.7 wheel support #19
- field can now be generated directly on meshes from meshio and ogs5py, see: commit f4a3439
• the srf and kriging classes now store the last `pos`, `mesh_type` and `field` values to keep them accessible, see: commit 29f7f1b
• tutorials on all important features of GSTools have been written for you guys #20
• a new interface to pyvista is provided to export fields to python vtk representation, which can be used for plotting, exploring and exporting fields #29

Changes

• the license was changed from GPL to LGPL in order to promote the use of this library #25
• the rotation angles are now interpreted in positive direction (counter clock wise)
• the `force_moments` keyword was removed from the SRF call method, it is now in provided as a field transformation #13
• drop support of python implementations of the variogram estimators #18
• the `variogram_normed` method was removed from the CovModel class due to redundancy commit 25b1647
• the position vector of 1D fields does not have to be provided in a list-like object with length 1 commit a6f5be8

Bugfixes

• several minor bugfixes

4.10 1.0.1 - Bouncy Blue - 2019-01-18

Bugfixes

• fixed Numpy and Cython version during build process

4.11 1.0.0 - Bouncy Blue - 2019-01-16

Enhancements

• added a new covariance class, which allows the easy usage of arbitrary covariance models
• added many predefined covariance models, including truncated power law models
• added tutorials and examples, showing and explaining the main features of GSTools
• variogram models can be fitted to data
• prebuilt binaries for many Linux distributions, Mac OS and Windows, making the installation, especially of the Cython code, much easier
• the generated fields can now easily be exported to vtk files
• variance scaling is supported for coarser grids
• added pure Python versions of the variogram estimators, in case somebody has problems compiling Cython code
• the documentation is now a lot cleaner and easier to use
• the code is a lot cleaner and more consistent now
• unit tests are now automatically tested when new code is pushed
• test coverage of code is shown
• GeoStat Framework now has a website, visit us: https://geostat-framework.github.io/

Changes

• release is not downwards compatible with release v0.4.0
• SRF creation has been adapted for the CovModel
• a tuple pos is now used instead of x, y, and z for the axes
• renamed estimate_unstructured and estimate_structured to vario_estimate_unstructured and vario_estimate_structured for less ambiguity

Bugfixes

• several minor bugfixes

4.12 0.4.0 - Glorious Green - 2018-07-17

Bugfixes

• import of cython functions put into a try-block

4.13 0.3.6 - Original Orange - 2018-07-17

First release of GSTools.


g

gstools, 117

gstools.covmodel, 120
gstools.covmodel.plot, 337
gstools.field, 339
gstools.field.generator, 358
gstools.field.upscaling, 364
gstools.krige, 369
gstools.normalizer, 447
gstools.random, 424
gstools.tools, 428
gstools.transform, 438
gstools.variogram, 365
Symbols

call (gstools.field.CondSRF method), 347
call (gstools.field.Field method), 353
call (gstools.field.SRF method), 340
call (gstools.field.generator.IncomprRandMeth method), 359
call (gstools.field.generator.RandMeth method), 361
call (gstools.krige.Detrended method), 417
call (gstools.krige.ExtDrift method), 408
call (gstools.krige.Krige method), 371
call (gstools.krige.Ordinary method), 390
call (gstools.krige.Simple method), 381
call (gstools.krige.Universal method), 399
call (gstools.random.MasterRNG method), 426

all_fields (gstools.field.CondSRF property), 350
all_fields (gstools.field.Field property), 356
all_fields (gstools.field.SRF property), 344
all_fields (gstools.krige.Detrended property), 421
all_fields (gstools.krige.ExtDrift property), 412
all_fields (gstools.krige.Krige property), 376
all_fields (gstools.krige.Ordinary property), 394
all_fields (gstools.krige.Simple property), 385
all_fields (gstools.krige.Universal property), 403

angles (gstools.covmodel.Circular property), 227
angles (gstools.covmodel.CovModel property), 127
angles (gstools.covmodel.Cubic property), 203
angles (gstools.covmodel.Exponential property), 153
angles (gstools.covmodel.Gaussian property), 140
angles (gstools.covmodel.HyperSpherical property), 252
angles (gstools.covmodel.JBessel property), 277
angles (gstools.covmodel.Linear property), 215
angles (gstools.covmodel.Matern property), 166
angles (gstools.covmodel.Rational property), 191
angles (gstools.covmodel.Spherical property), 239
angles (gstools.covmodel.Stable property), 178
angles (gstools.covmodel.SuperSpherical property), 264
angles (gstools.covmodel.TPLExponential property), 304
angles (gstools.covmodel.TPLGaussian property), 290
angles (gstools.covmodel.TPLSimple property), 332
angles (gstools.covmodel.TPLStable property), 318
anis (gstools.covmodel.Circular property), 228
anis (gstools.covmodel.CovModel property), 127
anis (gstools.covmodel.Cubic property), 204
anis (gstools.covmodel.Exponential property), 153
anis (gstools.covmodel.Gaussian property), 140
anis (gstools.covmodel.HyperSpherical property), 252
anis (gstools.covmodel.JBessel property), 277
anis (gstools.covmodel.Linear property), 216
anis (gstools.covmodel.Matern property), 166
anis (gstools.covmodel.Rational property), 191
anis (gstools.covmodel.Spherical property), 240
anis (gstools.covmodel.Stable property), 179
anis (gstools.covmodel.SuperSpherical property), 264
anis (gstools.covmodel.TPLExponential property), 305
anis (gstools.covmodel.TPLGaussian property), 291
anis (gstools.covmodel.TPLSimple property), 332
anis (gstools.covmodel.TPLStable property), 318
anis_bounds (gstools.covmodel.Circular property), 228
anis_bounds (gstools.covmodel.CovModel property), 127
anis_bounds (gstools.covmodel.Cubic property), 204
anis_bounds (gstools.covmodel.Exponential property), 153

485
anis_bounds() (gstools.covmodel.Gaussian property), 140
anis_bounds() (gstools.covmodel.HyperSpherical property), 252
anis_bounds() (gstools.covmodel.JBessel property), 277
anis_bounds() (gstools.covmodel.Linear property), 216
anis_bounds() (gstools.covmodel.Matern property), 166
anis_bounds() (gstools.covmodel.Rational property), 191
anis_bounds() (gstools.covmodel.Spherical property), 240
anis_bounds() (gstools.covmodel.Stable property), 179
anis_bounds() (gstools.covmodel.SuperSpherical property), 264
anis_bounds() (gstools.covmodel.TPLExponential property), 305
anis_bounds() (gstools.covmodel.TPLGaussian property), 291
anis_bounds() (gstools.covmodel.TPLSimple property), 332
anis_bounds() (gstools.covmodel.TPLStable property), 318
anisometrize() (gstools.covmodel.Circular property), 223
anisometrize() (gstools.covmodel.CovModel property), 123
anisometrize() (gstools.covmodel.Cubic property), 199
anisometrize() (gstools.covmodel.Exponential property), 148
anisometrize() (gstools.covmodel.Gaussian property), 135
anisometrize() (gstools.covmodel.HyperSpherical property), 247
anisometrize() (gstools.covmodel.JBessel property), 272
anisometrize() (gstools.covmodel.Linear property), 211
anisometrize() (gstools.covmodel.Matern property), 161
anisometrize() (gstools.covmodel.Rational property), 186
anisometrize() (gstools.covmodel.Spherical property), 235
anisometrize() (gstools.covmodel.Stable property), 174
anisometrize() (gstools.covmodel.SuperSpherical property), 259
anisometrize() (gstools.covmodel.TPLExponential property), 300
anisometrize() (gstools.covmodel.TPLGaussian property), 286
anisometrize() (gstools.covmodel.TPLSimple property), 327
anisometrize() (gstools.covmodel.TPLStable method), 314
apply() (in module gstools.transform), 438
apply_function() (in module gstools.transform), 443
apply_mean_norm_trend() (in module gstools.normalizer), 468
arg() (gstools.covmodel.Circular property), 228
arg() (gstools.covmodel.CovModel property), 128
arg() (gstools.covmodel.Cubic property), 204
arg() (gstools.covmodel.Exponential property), 153
arg() (gstools.covmodel.Gaussian property), 140
arg() (gstools.covmodel.HyperSpherical property), 252
arg() (gstools.covmodel.JBessel property), 277
arg() (gstools.covmodel.Linear property), 216
arg() (gstools.covmodel.Matern property), 166
arg() (gstools.covmodel.Rational property), 191
arg() (gstools.covmodel.Spherical property), 240
arg() (gstools.covmodel.Stable property), 179
arg() (gstools.covmodel.SuperSpherical property), 264
arg() (gstools.covmodel.TPLExponential property), 305
arg() (gstools.covmodel.TPLGaussian property), 291
arg() (gstools.covmodel.TPLSimple property), 305
check_arg_bounds() (gstools.covmodel.JBessel method), 272
check_arg_bounds() (gstools.covmodel.Linear method), 211
check_arg_bounds() (gstools.covmodel.Matern method), 161
check_arg_bounds() (gstools.covmodel.Rational method), 186
check_arg_bounds() (gstools.covmodel.Spherical method), 235
check_arg_bounds() (gstools.covmodel.Stable method), 174
check_arg_bounds() (gstools.covmodel.SuperSpherical method), 259
check_arg_bounds() (gstools.covmodel.TPLExponential method), 300
check_arg_bounds() (gstools.covmodelTPLGaussian method), 286
check_arg_bounds() (gstools.covmodel.TPLSimple method), 327
check_arg_bounds() (gstools.covmodel.TPLStable method), 314
cethod() (gstools.covmodel.Circular method), 223
dim() (gstools.covmodel.CovModel method), 123
dim() (gstools.covmodel.Cubic method), 199
dim() (gstools.covmodel.Exponential method), 148
dim() (gstools.covmodel.Gaussian method), 135
dim() (gstools.covmodel.HyperSpherical method), 247
dim() (gstools.covmodel.JBessel method), 272
dim() (gstools.covmodel.Linear method), 211
dim() (gstools.covmodel.Matern method), 161
dim() (gstools.covmodel.Rational method), 186
dim() (gstools.covmodel.Spherical method), 235
dim() (gstools.covmodel.Stable method), 174
dim() (gstools.covmodel.SuperSpherical method), 259
dim() (gstools.covmodel.TPLExponential method), 300
dim() (gstools.covmodel.TPLGaussian method), 286
dim() (gstools.covmodel.TPLSimple method), 327
dim() (gstools.covmodel.TPLStable method), 314
circular (class in gstools.covmodel), 220
cond_err() (gstools.krige.Detrended property), 421
cond_err() (gstools.krige.ExtDrift property), 412
cond_err() (gstools.krige.Krige property), 376
cond_err() (gstools.krige.Ordinary property), 394
cond_err() (gstools.krige.Simple property), 385
cond_err() (gstools.krige.Universal property), 403
cond_ext_drift() (gstools.krige.Detrended property), 421
cond_ext_drift() (gstools.krige.ExtDrift property), 412
cond_ext_drift() (gstools.krige.Krige property), 376
cond_ext_drift() (gstools.krige.Ordinary property), 394
cond_ext_drift() (gstools.krige.Simple property), 385
cond_ext_drift() (gstools.krige.Universal property), 403
cond_mean() (gstools.krige.Detrended property),
<table>
<thead>
<tr>
<th>Function</th>
<th>Method</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.Matern method</td>
<td>162</td>
</tr>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.Rational method</td>
<td>187</td>
</tr>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.Spherical method</td>
<td>236</td>
</tr>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.Stable method</td>
<td>174</td>
</tr>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.SuperSpherical method</td>
<td>260</td>
</tr>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.TPLExponential method</td>
<td>300</td>
</tr>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.TPLGaussian method</td>
<td>286</td>
</tr>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.TPLSimple method</td>
<td>328</td>
</tr>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.TPLStable method</td>
<td>286</td>
</tr>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.TPLExponential method</td>
<td>300</td>
</tr>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.TPLGaussian method</td>
<td>286</td>
</tr>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.TPLSimple method</td>
<td>328</td>
</tr>
<tr>
<td>cov_nugget()</td>
<td>gstools.covmodel.TPLStable method</td>
<td>286</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.Circular method</td>
<td>224</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.CovModel method</td>
<td>123</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.Cubic method</td>
<td>200</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.Exponential method</td>
<td>149</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.Gaussian method</td>
<td>136</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.HyperSpherical method</td>
<td>248</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.Linear method</td>
<td>212</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.Matern method</td>
<td>162</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.Rational method</td>
<td>187</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.Spherical method</td>
<td>236</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.Stable method</td>
<td>174</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.SuperSpherical method</td>
<td>260</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.TPLExponential method</td>
<td>300</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.TPLGaussian method</td>
<td>286</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.TPLSimple method</td>
<td>328</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.TPLStable method</td>
<td>286</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.Circular method</td>
<td>224</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.CovModel method</td>
<td>123</td>
</tr>
<tr>
<td>cov_yadrenko()</td>
<td>gstools.covmodel.Cubic method</td>
<td>200</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.Circular method</td>
<td>224</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.Exponential method</td>
<td>149</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.Gaussian method</td>
<td>136</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.HyperSpherical method</td>
<td>248</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.Linear method</td>
<td>212</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.Matern method</td>
<td>162</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.Rational method</td>
<td>187</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.Spherical method</td>
<td>236</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.Stable method</td>
<td>174</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.SuperSpherical method</td>
<td>260</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.TPLExponential method</td>
<td>300</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.TPLGaussian method</td>
<td>286</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.TPLSimple method</td>
<td>328</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.TPLStable method</td>
<td>286</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.Circular method</td>
<td>224</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.TPLExponential method</td>
<td>301</td>
</tr>
<tr>
<td>covariance()</td>
<td>gstools.covmodel.CovModel method</td>
<td>123</td>
</tr>
<tr>
<td>covariance()</td>
<td>(gstools.covmodel.Cubic method)</td>
<td>200</td>
</tr>
</tbody>
</table>

Index 491
covariance() (gstools.covmodel.TPLStable method), 314
CovModel (class in gstools.covmodel), 120
Cubic (class in gstools.covmodel), 196
D
default_arg_bounds() (gstools.covmodel.Circular method), 224
default_arg_bounds() (gstools.covmodel.CovModel method), 124
default_arg_bounds() (gstools.covmodel.Cubic method), 200
default_arg_bounds() (gstools.covmodel.Exponential method), 248
default_arg_bounds() (gstools.covmodel.JBessel method), 273
default_arg_bounds() (gstools.covmodel.Linear method), 212
default_arg_bounds() (gstools.covmodel.Matern method), 162
default_arg_bounds() (gstools.covmodel.Rational method), 187
default_arg_bounds() (gstools.covmodel.Spherical method), 236
default_arg_bounds() (gstools.covmodel.Stable method), 175
default_arg_bounds() (gstools.covmodel.SuperSpherical method), 260
default_arg_bounds() (gstools.covmodel.TPLExponential method), 301
default_arg_bounds() (gstools.covmodelTPLGaussian method), 287
default_arg_bounds() (gstools.covmodel.TPLSimple method), 328
default_arg_bounds() (gstools.covmodel.TPLStable method), 314
default_field_names (gstools.krige.CondSRF attribute), 350
default_field_names (gstools.krige.Field attribute), 356
default_field_names (gstools.krige.SRF attribute), 344
default_field_names (gstools.krige.Detrended attribute), 421
default_field_names (gstools.krige.ExtDrift attribute), 413
default_field_names (gstools.krige.Krige attribute), 376
default_field_names (gstools.krige.Ordinary attribute), 395
default_field_names (gstools.krige.Simple attribute), 386
default_field_names (gstools.krige.Universal attribute), 404
default_opt_arg() (gstools.covmodel.Circular method), 224
default_opt_arg() (gstools.covmodel.CovModel method), 124
default_opt_arg() (gstools.covmodel.Cubic method), 200
default_opt_arg() (gstools.covmodel.Exponential method), 149
default_opt_arg() (gstools.covmodel.Gaussian method), 136
default_opt_arg() (gstools.covmodel.HyperSpherical method), 248
default_opt_arg() (gstools.covmodel.JBessel method), 273
default_opt_arg() (gstools.covmodel.Linear method), 212
default_opt_arg() (gstools.covmodel.Matern method), 162
default_opt_arg() (gstools.covmodel.Rational method), 187
default_opt_arg() (gstools.covmodel.Spherical method), 236
default_opt_arg() (gstools.covmodel.Stable method), 175
default_opt_arg() (gstools.covmodel.SuperSpherical method), 260
default_opt_arg() (gstools.covmodel.TPLExponential method), 301
default_opt_arg() (gstools.covmodel.TPLGaussian method), 287
default_opt_arg() (gstools.covmodel.TPLSimple method), 328
default_opt_arg() (gstools.covmodel.TPLStable method), 314
default_opt_arg_bounds() (gstools.covmodel.Circular method), 224
default_opt_arg_bounds() (gstools.covmodel.CovModel method), 124
default_opt_arg_bounds() (gstools.covmodel.Cubic method), 200
field_names() (gstools.krige.Universal property), 404
field_shape() (gstools.field.CondSRF property), 350
field_shape() (gstools.field.Field property), 356
field_shape() (gstools.field.SRF property), 344
field_shape() (gstools.krige.Detrended property), 422
field_shape() (gstools.krige.ExtDrift property), 431
field_shape() (gstools.krige.Krige property), 377
field_shape() (gstools.krige.Ordinary property), 395
field_shape() (gstools.krige.Simple property), 386
field_shape() (gstools.krige.Universal property), 404
fit() (gstools.normalizer.BoxCox method), 453
fit() (gstools.normalizer.BoxCoxShift method), 457
fit() (gstools.normalizer.LogNormal method), 450
fit() (gstools.normalizer.Manly method), 465
fit() (gstools.normalizer.Modulus method), 462
fit() (gstools.normalizer.Normalizer method), 447
fit() (gstools.normalizer.YeoJohnson method), 459
fit_variogram() (gstools.covmodel.Circular method), 224
fit_variogram() (gstools.covmodel.CovModel method), 124
fit_variogram() (gstools.covmodel.Cubic method), 200
fit_variogram() (gstools.covmodel.Exponential method), 149
fit_variogram() (gstools.covmodel.Gaussian method), 136
fit_variogram() (gstools.covmodel.CovModel method), 248
fit_variogram() (gstools.covmodel.JBessel method), 273
fit_variogram() (gstools.covmodel.Linear method), 212
fit_variogram() (gstools.covmodel.Matern method), 162
fit_variogram() (gstools.covmodel.Rational method), 187
fit_variogram() (gstools.covmodel.Spherical method), 236
fit_variogram() (gstools.covmodel.Stable method), 175
fit_variogram() (gstools.covmodel.CovModel method), 260
fit_variogram() (gstools.covmodel.TPLExponential method), 301
fit_variogram() (gstools.covmodel.TPLGaussian method), 287
fit_variogram() (gstools.covmodel.TPLSimple method), 328
fit_variogram() (gstools.covmodel.TPLStable method), 315
fix_dim() (gstools.covmodel.Circular method), 226
fix_dim() (gstools.covmodel.CovModel method), 126
fix_dim() (gstools.covmodel.Exponential method), 202
fix_dim() (gstools.covmodel.Gaussian method), 151
fix_dim() (gstools.covmodel.HyperSpherical method), 138
fix_dim() (gstools.covmodel.JBessel method), 275
fix_dim() (gstools.covmodel.Linear method), 214
fix_dim() (gstools.covmodel.Matern method), 164
fix_dim() (gstools.covmodel.Rational method), 189
fix_dim() (gstools.covmodel.Spherical method), 238
fix_dim() (gstools.covmodel.Stable method), 177
fix_dim() (gstools.covmodel.TPLExponential method), 262
fix_dim() (gstools.covmodel.TPLGaussian method), 289
fix_dim() (gstools.covmodel.TPLSimple method), 330
fix_dim() (gstools.covmodel.TPLStable method), 317

g
Gaussian (class in gstools.covmodel), 132
generate_grid() (in module gstools.tools), 436
generate_st_grid() (in module gstools.tools), 436
generator() (gstools.field.CondSRF property), 351
generator() (gstools.field.SRF property), 344
generate() (gstools.krige.Detrended method), 417
generate() (gstools.krige.ExtDrift method), 408
generate() (gstools.krige.Krige method), 372
generate() (gstools.krige.Ordinary method), 390
generate() (gstools.krige.Simple method), 381
generate() (gstools.krige.Universal method), 399
generator() (gstools.field.generator.IncomprRandMeth method), 359
generator() (gstools.field.generator.RandMeth method), 362
generate() (gstools.field.CondSRF method), 347
generate() (gstools.field.ConstSRF method), 347
generate() (gstools.field.Field method), 353
generate() (gstools.field.SRF method), 341
generate() (gstools.krige.Detrended method), 417
generate() (gstools.krige.ExtDrift method), 409
<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Module/Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_store_config()</td>
<td>(gstools.krige.Krige)</td>
<td>372</td>
</tr>
<tr>
<td>get_store_config()</td>
<td>(gstools.krige.Ordinary)</td>
<td>391</td>
</tr>
<tr>
<td>get_store_config()</td>
<td>(gstools.krige.Simple)</td>
<td>382</td>
</tr>
<tr>
<td>get_store_config()</td>
<td>(gstools.krige.Universal)</td>
<td>400</td>
</tr>
<tr>
<td>givens_rotation()</td>
<td>(in module gstools.tools)</td>
<td>434</td>
</tr>
<tr>
<td>gstools</td>
<td>module, 117</td>
<td></td>
</tr>
<tr>
<td>gstools.covmodel</td>
<td>module, 120</td>
<td></td>
</tr>
<tr>
<td>gstools.covmodel.plot</td>
<td>module, 337</td>
<td></td>
</tr>
<tr>
<td>gstools.field</td>
<td>module, 339</td>
<td></td>
</tr>
<tr>
<td>gstools.field.generator</td>
<td>module, 358</td>
<td></td>
</tr>
<tr>
<td>gstools.field.upscaling</td>
<td>module, 364</td>
<td></td>
</tr>
<tr>
<td>gstools.krige</td>
<td>module, 369</td>
<td></td>
</tr>
<tr>
<td>gstools.normalizer</td>
<td>module, 447</td>
<td></td>
</tr>
<tr>
<td>gstools.random</td>
<td>module, 424</td>
<td></td>
</tr>
<tr>
<td>gstools.tools</td>
<td>module, 428</td>
<td></td>
</tr>
<tr>
<td>gstools.transform</td>
<td>module, 438</td>
<td></td>
</tr>
<tr>
<td>gstools.variogram</td>
<td>module, 365</td>
<td></td>
</tr>
</tbody>
</table>

**H**

<table>
<thead>
<tr>
<th>Function/Method</th>
<th>Module/Class</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.Circular)</td>
<td>228</td>
</tr>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.CovModel)</td>
<td>128</td>
</tr>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.Cubic)</td>
<td>204</td>
</tr>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.Exponential)</td>
<td>154</td>
</tr>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.Gaussian)</td>
<td>141</td>
</tr>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.HyperSpherical)</td>
<td>252</td>
</tr>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.JBessel)</td>
<td>278</td>
</tr>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.Linear)</td>
<td>216</td>
</tr>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.Matern)</td>
<td>167</td>
</tr>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.Rational)</td>
<td>192</td>
</tr>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.Spherical)</td>
<td>240</td>
</tr>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.Stable)</td>
<td>179</td>
</tr>
<tr>
<td>hankel_kw()</td>
<td>(gstools.covmodel.SuperSpherical)</td>
<td>265</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.Circular)</td>
<td>229</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.CovModel)</td>
<td>128</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.Cubic)</td>
<td>205</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.Exponential)</td>
<td>154</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.Gaussian)</td>
<td>141</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.HyperSpherical)</td>
<td>253</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.JBessel)</td>
<td>278</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.Linear)</td>
<td>217</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.Matern)</td>
<td>167</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.Rational)</td>
<td>192</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.Spherical)</td>
<td>241</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.Stable)</td>
<td>180</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.SuperSpherical)</td>
<td>265</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.TPLExponential)</td>
<td>306</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.TPLGaussian)</td>
<td>292</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.TPLSimple)</td>
<td>333</td>
</tr>
<tr>
<td>has_cdf()</td>
<td>(gstools.covmodel.TPLStable)</td>
<td>319</td>
</tr>
<tr>
<td>has_const_mean()</td>
<td>(gstools.krige.Detrended)</td>
<td>422</td>
</tr>
<tr>
<td>has_const_mean()</td>
<td>(gstools.krige.ExtDrift)</td>
<td>413</td>
</tr>
<tr>
<td>has_const_mean()</td>
<td>(gstools.krige.Krige)</td>
<td>377</td>
</tr>
<tr>
<td>has_const_mean()</td>
<td>(gstools.krige.Ordinary)</td>
<td>395</td>
</tr>
<tr>
<td>has_const_mean()</td>
<td>(gstools.krige.Simple)</td>
<td>386</td>
</tr>
<tr>
<td>has_const_mean()</td>
<td>(gstools.krige.Universal)</td>
<td>404</td>
</tr>
<tr>
<td>has_ppf()</td>
<td>(gstools.covmodel.Circular)</td>
<td>229</td>
</tr>
<tr>
<td>has_ppf()</td>
<td>(gstools.covmodel.CovModel)</td>
<td>128</td>
</tr>
<tr>
<td>has_ppf()</td>
<td>(gstools.covmodel.Cubic)</td>
<td>205</td>
</tr>
</tbody>
</table>
has_ppf() (gstools.covmodel.Exponential property), 154
has_ppf() (gstools.covmodel.Gaussian property), 141
has_ppf() (gstools.covmodel.HyperSpherical property), 253
has_ppf() (gstools.covmodel.JBessel property), 278
has_ppf() (gstools.covmodel.Linear property), 217
has_ppf() (gstools.covmodel.Matern property), 167
has_ppf() (gstools.covmodel.Rational property), 192
has_ppf() (gstools.covmodel.Spherical property), 241
has_ppf() (gstools.covmodel.Stable property), 180
has_ppf() (gstools.covmodel.SuperSpherical property), 265
has_ppf() (gstools.covmodel.TPLExponential property), 306
has_ppf() (gstools.covmodel.TPLGaussian property), 292
has_ppf() (gstools.covmodel.TPLSimple property), 333
has_ppf() (gstools.covmodel.TPLStable property), 319
HyperSpherical (class in gstools.covmodel), 244

inc_beta() (in module gstools.tools), 431
inc_gamma() (in module gstools.tools), 430
inc_gamma_low() (in module gstools.tools), 430
IncomprRandMeth (class in gstools.field.generator), 358
int_drift_no() (gstools.krige.Detrended property), 422
int_drift_no() (gstools.krige.ExtDrift property), 413
int_drift_no() (gstools.krige.Krige property), 377
int_drift_no() (gstools.krige.Krige property), 395
int_drift_no() (gstools.krige.Simple property), 386
int_drift_no() (gstools.krige.Universal property), 404
integral_scale() (gstools.covmodel.Circular property), 229
integral_scale() (gstools.covmodel.CovModel property), 128
integral_scale() (gstools.covmodel.Cubic property), 205
integral_scale() (gstools.covmodel.Exponential property), 154
integral_scale() (gstools.covmodel.Gaussian property), 141
integral_scale() (gstools.covmodel.HyperSpherical property), 253
isometrize() (gstools.covmodel.Exponential method), 151
isometrize() (gstools.covmodel.Gaussian method), 138
isometrize() (gstools.covmodel.HyperSpherical method), 250
isometrize() (gstools.covmodel.JBessel method), 275
isometrize() (gstools.covmodel.Linear method), 214
isometrize() (gstools.covmodel.Matern method), 164
isometrize() (gstools.covmodel.Rational method), 189
isometrize() (gstools.covmodel.Spherical method), 238
isometrize() (gstools.covmodel.Stable method), 177
isometrize() (gstools.covmodel.SuperSpherical method), 262
isometrize() (gstools.covmodel.TPLExponential method), 303
isometrize() (gstools.covmodel.TPLGaussian method), 289
isometrize() (gstools.covmodel.TPLSimple method), 330
isometrize() (gstools.covmodel.TPLStable method), 317

J
J(Bessel (class in gstools.covmodel), 269

K
kernel_loglikelihood()
(gstools.normalizer.BoxCox method), 454
kernel_loglikelihood()
(gstools.normalizer.BoxCoxShift method), 457
kernel_loglikelihood()
(gstools.normalizer.LogNormal method), 451
kernel_loglikelihood()
(gstools.normalizer.Manly method), 466
kernel_loglikelihood()
(gstools.normalizer.Modulus method), 463
kernel_loglikelihood()
(gstools.normalizer.Normalizer method), 448
kernel_loglikelihood()
(gstools.normalizer.YeoJohnson method), 460

Krige (class in gstools.krige), 369
krige() (gstools.field.CondSRF property), 351
krige_size() (gstools.krige.Detrended property), 422
krige_size() (gstools.krige.ExtDrift property), 413
krige_size() (gstools.krige.Krige property), 377
krige_size() (gstools.krige.Odinary property), 395
krige_size() (gstools.krige.Simple property), 386
krige_size() (gstools.krige.Universal property), 404

L
latlon() (gstools.covmodel.Circular property), 229
latlon() (gstools.covmodel.CovModel property), 129
latlon() (gstools.covmodel.Cubic property), 205
latlon() (gstools.covmodel.Exponential property), 154
latlon() (gstools.covmodel.Gaussian property), 142
latlon() (gstools.covmodel.HyperSpherical property), 253
latlon() (gstools.covmodel.JBessel property), 278
latlon() (gstools.covmodel.Linear property), 217
latlon() (gstools.covmodel.Matern property), 167
latlon() (gstools.covmodel.Rational property), 192
latlon() (gstools.covmodel.Spherical property), 241
latlon() (gstools.covmodel.Stable property), 180
latlon() (gstools.covmodel.SuperSpherical property), 265
latlon() (gstools.covmodel.TPLExponential property), 306
latlon() (gstools.covmodel.TPLGaussian property), 292
latlon() (gstools.covmodel.TPLSimple property), 333
latlon() (gstools.covmodel.TPLStable property), 320
latlon() (gstools.covmodel.TPLStable property), 320
latlon() (gstools.field.CondSRF property), 351
latlon() (gstools.field.Field property), 356
latlon() (gstools.field.SRF property), 344
latlon() (gstools.krige.Detrended property), 422
latlon() (gstools.krige.ExtDrift property), 413
latlon() (gstools.krige.Krige property), 377
latlon() (gstools.krige.Odinary property), 395
latlon() (gstools.krige.Simple property), 386
latlon() (gstools.krige.Universal property), 404
len_low_rescaled() (gstools.covmodel.TPLExponential property), 306
len_low_rescaled() (gstools.covmodel.TPLGaussian property), 292
len_low_rescaled() (gstools.covmodel.TPLStable property), 320
len_rescaled() (gstools.covmodel.Circular property), 229
len_rescaled() (gstools.covmodel.CovModel property), 129
len_rescaled() (gstools.covmodel.Cubic property), 205
len_rescaled() (gstools.covmodel.Exponential property), 154
len_rescaled() (gstools.covmodel.Gaussian property), 142
len_rescaled() (gstools.covmodel.HyperSpherical property), 253
len_rescaled() (gstools.covmodel.JBessel property), 278
len_rescaled() (gstools.covmodel.Linear property), 168
len_rescaled() (gstools.covmodel.Matern property), 192
len_rescaled() (gstools.covmodel.Rational property), 241
len_rescaled() (gstools.covmodel.Spherical property), 265
len_rescaled() (gstools.covmodel.Stable property), 241
len_rescaled() (gstools.covmodel.SuperSpherical property), 292
len_rescaled() (gstools.covmodel.TPLExponential property), 306
len_rescaled() (gstools.covmodel.TPLGaussian property), 334
len_rescaled() (gstools.covmodel.TPLSimple property), 342
len_rescaled() (gstools.covmodel.TPLStable property), 346
len_rescaled() (gstools.covmodel.TPLExponential property), 318
len_rescaled() (gstools.covmodel.TPLGaussian property), 318
len_rescaled() (gstools.covmodel.TPLSimple property), 324
len_rescaled() (gstools.covmodel.TPLStable property), 328
len_scale() (gstools.covmodel.Circular property), 229
len_scale() (gstools.covmodel.CovModel property), 129
len_scale() (gstools.covmodel.Cubic property), 205
len_scale() (gstools.covmodel.Exponential property), 155
len_scale() (gstools.covmodel.Gaussian property), 142
len_scale() (gstools.covmodel.HyperSpherical property), 253
len_scale() (gstools.covmodel.JBessel property), 279
len_scale() (gstools.covmodel.Linear property), 217
len_scale() (gstools.covmodel.Matern property), 168
len_scale() (gstools.covmodel.Rational property), 193
len_scale() (gstools.covmodel.Spherical property), 241
len_scale() (gstools.covmodel.Stable property), 180
len_scale() (gstools.covmodel.SuperSpherical property), 266
len_scale() (gstools.covmodel.TPLExponential property), 307
len_scale() (gstools.covmodel.TPLGaussian property), 293
len_scale() (gstools.covmodel.TPLSimple property), 334
len_scale() (gstools.covmodel.TPLStable property), 320
len_scale_bounds() (gstools.covmodel.CovModel property),
len_scale_bounds() (gstools.covmodel.Circular property),
len_scale_bounds() (gstools.covmodel.Cubic property),
len_scale_bounds() (gstools.covmodel.Exponential property),
len_scale_bounds() (gstools.covmodel.Gaussian property),
len_scale_bounds() (gstools.covmodel.HyperSpherical property),
len_scale_bounds() (gstools.covmodel.JBessel property),
len_scale_bounds() (gstools.covmodel.Linear property),
len_scale_bounds() (gstools.covmodel.Matern property),
len_scale_bounds() (gstools.covmodel.Rational property),
len_scale_bounds() (gstools.covmodel.Spherical property),
len_scale_bounds() (gstools.covmodel.Stable property),
len_scale_bounds() (gstools.covmodel.SuperSpherical property),
len_scale_bounds() (gstools.covmodel.TPLExponential property),
len_scale_bounds() (gstools.covmodel.TPLGaussian property),
len_scale_bounds() (gstools.covmodel.TPLSimple property),
len_scale_bounds() (gstools.covmodel.TPLStable property),
len_scale_vec() (gstools.covmodel.Circular property),
len_scale_vec() (gstools.covmodel.CovModel property),
len_scale_vec() (gstools.covmodel.Linear property),
len_scale_vec() (gstools.covmodel.Matern property),
len_scale_vec() (gstools.covmodel.Rational property),
len_scale_vec() (gstools.covmodel.Spherical property),
len_scale_vec() (gstools.covmodel.Stable property),
len_scale_vec() (gstools.covmodel.SuperSpherical property),
len_scale_vec() (gstools.covmodel.TPLExponential property),
len_scale_vec() (gstools.covmodel.TPLGaussian property),
len_scale_vec() (gstools.covmodel.HyperSpherical property), 254
len_scale_vec() (gstools.covmodel.JBessel property), 279
len_scale_vec() (gstools.covmodel.Linear property), 218
len_scale_vec() (gstools.covmodel.Matern property), 168
len_scale_vec() (gstools.covmodel.Rational property), 193
len_scale_vec() (gstools.covmodel.Spherical property), 242
len_scale_vec() (gstools.covmodel.Stable property), 181
len_scale_vec() (gstools.covmodel.SuperSpherical property), 266
len_scale_vec() (gstools.covmodel.TPLExponential property), 307
len_scale_vec() (gstools.covmodel.TPLGaussian property), 293
len_scale_vec() (gstools.covmodel.TPLSimple property), 321
len_scale_vec() (gstools.covmodel.TPLStable property), 321
len_up() (gstools.covmodel.TPLExponential property), 307
len_up() (gstools.covmodel.TPLGaussian property), 293
len_up() (gstools.covmodel.TPLStable property), 321
len_up_rescaled() (gstools.covmodel.TPLExponential property), 307
len_up_rescaled() (gstools.covmodel.TPLGaussian property), 293
len_up_rescaled() (gstools.covmodel.TPLStable property), 321
likelihood() (gstools.normalizer.BoxCox method), 454
likelihood() (gstools.normalizer.BoxCoxShift method), 457
likelihood() (gstools.normalizer.LogNormal method), 451
likelihood() (gstools.normalizer.Manly method), 466
likelihood() (gstools.normalizer.Modulus method), 463
likelihood() (gstools.normalizer.Normalizer method), 448
likelihood() (gstools.normalizer.YeoJohnson method), 460
Linear (class in gstools.covmodel), 208
ln_spectral_rad_pdf() (gstools.covmodel.Circular method), 226
ln_spectral_rad_pdf() (gstools.covmodel.CovModel method), 126
ln_spectral_rad_pdf() (gstools.covmodel.Exponential method), 151
ln_spectral_rad_pdf() (gstools.covmodel.Gaussian method), 138
ln_spectral_rad_pdf() (gstools.covmodel.HyperSpherical method), 250
ln_spectral_rad_pdf() (gstools.covmodel.JBessel method), 275
ln_spectral_rad_pdf() (gstools.covmodel.Linear method), 214
ln_spectral_rad_pdf() (gstools.covmodel.Matern method), 164
ln_spectral_rad_pdf() (gstools.covmodel.Rational method), 189
ln_spectral_rad_pdf() (gstools.covmodel.Spherical method), 238
ln_spectral_rad_pdf() (gstools.covmodel.Stable method), 177
ln_spectral_rad_pdf() (gstools.covmodel.SuperSpherical method), 262
ln_spectral_rad_pdf() (gstools.covmodel.TPLExponential method), 303
ln_spectral_rad_pdf() (gstools.covmodel.TPLGaussian method), 289
ln_spectral_rad_pdf() (gstools.covmodel.TPLSimple method), 330
ln_spectral_rad_pdf() (gstools.covmodel.TPLStable method), 317
loglikelihood() (gstools.normalizer.BoxCox method), 454
loglikelihood() (gstools.normalizer.BoxCoxShift method), 457
loglikelihood() (gstools.normalizer.LogNormal method), 451
loglikelihood() (gstools.normalizer.Manly method), 466
loglikelihood() (gstools.normalizer.Modulus method), 463
loglikelihood() (gstools.normalizer.Normalizer method), 448
loglikelihood() (gstools.normalizer.YeoJohnson method), 460
LogNormal (class in gstools.normalizer), 450
main_axes() (gstools.covmodel.Circular method), 226
main_axes() (gstools.covmodel.CovModel method), 126
main_axes() (gstools.covmodel.Cubic method), 202
main_axes() (gstools.covmodel.Exponential method), 151
main_axes() (gstools.covmodel.Gaussian method), 138
main_axes() (gstools.covmodel.HyperSpherical method), 250
main_axes() (gstools.covmodel.JBessel method), 275
main_axes() (gstools.covmodel.Linear method), 214
main_axes() (gstools.covmodel.Matern method), 164
main_axes() (gstools.covmodel.Rational method), 189
main_axes() (gstools.covmodel.Spherical method), 238
main_axes() (gstools.covmodel.Stable method), 177
main_axes() (gstools.covmodel.SuperSpherical method), 262
main_axes() (gstools.covmodel.TPLExponential method), 303
main_axes() (gstools.covmodel.TPLGaussian method), 289
main_axes() (gstools.covmodel.TPLSimple method), 330
main_axes() (gstools.covmodel.TPLStable method), 317
Manly (class in gstools.normalizer), 465
MasterRNG (class in gstools.random), 426
Matern (class in gstools.covmodel), 158
matrix_anisometrize() (in module gstools.tools), 436
matrix_anisotropify() (in module gstools.tools), 435
matrix_derotate() (in module gstools.tools), 435
matrix_isometrize() (in module gstools.tools), 435
matrix_isotropify() (in module gstools.tools), 435
matrix_rotate() (in module gstools.tools), 434
mean() (gstools.field.CondSRF property), 351
mean() (gstools.field.Field property), 356
mean() (gstools.krige.Detrended property), 422
mean() (gstools.krige.ExtDrift property), 414
mean() (gstools.krige.Krige property), 377
mean() (gstools.krige.Ordinary property), 395
mean() (gstools.krige.Simple property), 386
mean() (gstools.krige.Universal property), 405
mesh() (gstools.field.CondSRF method), 348
mesh() (gstools.field.Field method), 353
mesh() (gstools.field.SRF method), 341
mesh() (gstools.krige.Detrended method), 418
mesh() (gstools.krige.ExtDrift method), 409
mesh() (gstools.krige.Krige method), 372
mesh() (gstools.krige.Ordinary method), 391
mesh() (gstools.krige.Simple method), 382
mesh() (gstools.krige.Universal method), 400
mesh_type() (gstools.field.CondSRF property), 351
mesh_type() (gstools.field.Field property), 356
mesh_type() (gstools.field.SRF property), 344
mesh_type() (gstools.krige.Detrended property), 422
mesh_type() (gstools.krige.ExtDrift property), 414
mesh_type() (gstools.krige.Krige property), 377
mesh_type() (gstools.krige.Ordinary property), 395
mesh_type() (gstools.krige.Simple property), 386
mesh_type() (gstools.krige.Universal property), 405
mode_no() (gstools.field.generator.IncomprRandMeth property), 360
mode_no() (gstools.field.generator.RandMeth property), 362
model() (gstools.field.CondSRF property), 351
model() (gstools.field.Field property), 356
model() (gstools.field.generator.IncomprRandMeth property), 360
model() (gstools.field.generator.RandMeth property), 362
model() (gstools.field.SRF property), 344
model() (gstools.krige.Detrended property), 422
model() (gstools.krige.ExtDrift property), 414
model() (gstools.krige.Krige property), 377
model() (gstools.krige.Ordinary property), 395
model() (gstools.krige.Simple property), 386
model() (gstools.krige.Universal property), 405
module
gstools, 117
gstools.covmodel, 120
gstools.covmodel.plot, 337
gstools.field, 339
gstools.field.generator, 358
gstools.field.upscale, 364
gstools.krige, 369
gstools.normalizer, 447
gstools.random, 424
gstools.tools, 428
gstools.transform, 438
gstools.variogram, 365
Modulus (class in gstools.normalizer), 462
N
name() (gstools.covmodel.Circular property), 230
name() (gstools.covmodel.CovModel property), 130
name() (gstools.covmodel.Cubic property), 206
name() (gstools.covmodel.Exponential property), 155
name() (gstools.covmodel.Gaussian property), 142
name() (gstools.covmodel.HyperSpherical property), 254
name() (gstools.covmodel.JBessel property), 279
name() (gstools.covmodel.Linear property), 218
name() (gstools.covmodel.Matern property), 168
normalizer() (gstools.normalizer.YeoJohnson method), 460
normalize_range (gstools.normalizer.BoxCox attribute), 455
normalize_range (gstools.normalizer.LogNormal attribute), 452
normalize_range (gstools.normalizer.Manly attribute), 467
normalize_range (gstools.normalizer.Modulus attribute), 464
normalize_range (gstools.normalizer.Normailizer attribute), 449
normalize_range (gstools.normalizer.YeoJohnson attribute), 461
normalize_range() (gstools.normalizer.BoxCoxShift property), 458
Normalizer (class in gstools.normalizer), 447
normalizer() (gstools.field.CondSRF property), 351
normalizer() (gstools.field.Field property), 357
normalizer() (gstools.field.SRF property), 345
normalizer() (gstools.krige.Detrended property), 423
normalizer() (gstools.krige.Krige property), 377
normalizer() (gstools.krige.Ordinary property), 396
normalizer() (gstools.krige.Simple property), 387
normalizer() (gstools.krige.Universal property), 405
nugget() (gstools.covmodel.Circular property), 230
nugget() (gstools.covmodel.CovModel property), 130
nugget() (gstools.covmodel.Cubic property), 206
nugget() (gstools.covmodel.Exponential property), 155
nugget() (gstools.covmodel.Gaussian property), 142
nugget() (gstools.covmodel.HyperSpherical property), 254
nugget() (gstools.covmodel.JBessel property), 279
nugget() (gstools.covmodel.Linear property), 218
nugget() (gstools.covmodel.Matern property), 168
nugget() (gstools.covmodel.Rational property), 193
nugget() (gstools.covmodel.Spherical property), 242
nugget() (gstools.covmodel.Stable property), 181
nugget() (gstools.covmodel.SuperSpherical property), 266
nugget() (gstools.covmodel.TPLExponential property), 307
nugget() (gstools.covmodel.TPLGaussian property), 293
nugget() (gstools.covmodel.TPLSimple property), 334
nugget() (gstools.covmodel.TPLStable property), 321
nugget() (gstools.normalizer.BoxCox property), 455
nugget() (gstools.normalizer.BoxCoxShift property), 458
nugget() (gstools.normalizer.LogNormal property), 452
nugget() (gstools.normalizer.Manly property), 467
nugget() (gstools.normalizer.Modulus property), 464
nugget() (gstools.normalizer.Normailizer property), 449
nugget() (gstools.normalizer.YeoJohnson property), 461
nugget() (gstools.normalizer.YeoJohnson attribute), 461
nugget() (gstools.normalizer.YeoJohnson attribute), 461
nugget_bounds() (gstools.covmodel.Circular property), 230
nugget_bounds() (gstools.covmodel.CovModel property), 130
nugget_bounds() (gstools.covmodel.Cubic property), 206
nugget_bounds() (gstools.covmodel.Exponential property), 155
nugget_bounds() (gstools.covmodel.Gaussian property), 142
nugget_bounds() (gstools.covmodel.HyperSpherical property), 254
nugget_bounds() (gstools.covmodel.JBessel property), 279
nugget_bounds() (gstools.covmodel.Linear property), 218
nugget_bounds() (gstools.covmodel.Matern property), 168
nugget_bounds() (gstools.covmodel.Rational property), 193
nugget_bounds() (gstools.covmodel.Spherical property), 242
nugget_bounds() (gstools.covmodel.Stable property), 242
nugget_bounds() (gstools.covmodel.SuperSpherical property), 242
nugget_bounds() (gstools.covmodel.TPLExponential property), 257
nugget_bounds() (gstools.covmodel.TPLGaussian property), 294
nugget_bounds() (gstools.covmodel.TPLSimple property), 334
nugget_bounds() (gstools.covmodel.TPLStable property), 321

doctest() (gstools.covmodel.Circular property), 230
opt_arg() (gstools.covmodel.Circular property), 308
opt_arg() (gstools.covmodel.CovModel property), 130
opt_arg() (gstools.covmodel.Cubic property), 206
opt_arg() (gstools.covmodel.Exponential property), 155
opt_arg() (gstools.covmodel.Gaussian property), 142
opt_arg() (gstools.covmodel.HyperSpherical property), 254
opt_arg() (gstools.covmodel.JBessel property), 279
opt_arg() (gstools.covmodel.Linear property), 218
opt_arg() (gstools.covmodel.Matern property), 168
opt_arg() (gstools.covmodel.Rational property), 193
opt_arg() (gstools.covmodel.Spherical property), 242
opt_arg() (gstools.covmodel.Stable property), 181
opt_arg() (gstools.covmodel.SuperSpherical property), 242
opt_arg() (gstools.covmodel.TPLExponential property), 308
opt_arg() (gstools.covmodel.TPLGaussian property), 294
opt_arg() (gstools.covmodel.TPLSimple property), 334
opt_arg() (gstools.covmodel.TPLStable property), 321
opt_arg_bounds() (gstools.covmodel.Circular property), 230
opt_arg_bounds() (gstools.covmodel.CovModel property), 130
opt_arg_bounds() (gstools.covmodel.Cubic property), 206
opt_arg_bounds() (gstools.covmodel.Exponential property), 155
opt_arg_bounds() (gstools.covmodel.Gaussian property), 142
opt_arg_bounds() (gstools.covmodel.HyperSpherical property), 254
opt_arg_bounds() (gstools.covmodel.JBessel property), 279
opt_arg_bounds() (gstools.covmodel.Linear property), 218
opt_arg_bounds() (gstools.covmodel.Matern property), 168
opt_arg_bounds() (gstools.covmodel.Rational property), 193
opt_arg_bounds() (gstools.covmodel.Spherical property), 242
opt_arg_bounds() (gstools.covmodel.Stable property), 181
opt_arg_bounds() (gstools.covmodel.SuperSpherical property), 242
opt_arg_bounds() (gstools.covmodel.TPLExponential property), 308
opt_arg_bounds() (gstools.covmodel.TPLGaussian property), 294
opt_arg_bounds() (gstools.covmodel.TPLSimple property), 334
opt_arg_bounds() (gstools.covmodel.TPLStable property), 321

Ordinary (class in gstools.krige), 388

percentile_scale() (gstools.covmodel.Circular method), 226
percentile_scale() (gstools.covmodel.CovModel method), 126
percentile_scale() (gstools.covmodel.Cubic method), 202
percentile_scale() (gstools.covmodel.Exponential method),
percentile_scale() (gstools.covmodel.Gaussian method), 138
percentile_scale() (gstools.covmodel.HyperSpherical method), 250
percentile_scale() (gstools.covmodel.JBessel method), 275
percentile_scale() (gstools.covmodel.Linear method), 214
percentile_scale() (gstools.covmodel.Matern method), 164
percentile_scale() (gstools.covmodel.Rational method), 189
percentile_scale() (gstools.covmodel.Spherical method), 238
percentile_scale() (gstools.covmodel.Stable method), 177
percentile_scale() (gstools.covmodel.SuperSpherical method), 262
percentile_scale() (gstools.covmodel.TPLExponential method), 303
percentile_scale() (gstools.covmodel.TPLGaussian method), 289
percentile_scale() (gstools.covmodel.TPLSimple method), 330
percentile_scale() (gstools.covmodel.TPLStable method), 317
plot() (gstools.krige.Detrended method), 418
plot() (gstools.krige.ExtDrift method), 410
plot() (gstools.krige.Krige method), 373
plot() (gstools.krige.Ordinary method), 391
plot() (gstools.krige.Simple method), 382
plot() (gstools.krige.Universal method), 401
plot_cor_axis() (in module gstools.covmodel.plot), 337
plot_corSpatial() (in module gstools.covmodel.plot), 337
plot_cor_yadrenko() (in module gstools.covmodel.plot), 337
plot_correlation() (in module gstools.covmodel.plot), 337
plot_cov_axis() (in module gstools.covmodel.plot), 337
plot_covSpatial() (in module gstools.covmodel.plot), 337
plot_cov_yadrenko() (in module gstools.covmodel.plot), 337
plot_covariance() (in module gstools.covmodel.plot), 337
plot_spectral_density() (in module gstools.covmodel.plot), 338
plot_spectral_rad_pdf() (in module gstools.covmodel.plot), 338
plot_spectrum() (in module gstools.covmodel.plot), 338
plot_variogram_axis() (in module gstools.covmodel.plot), 338
plot_variogramSpatial() (in module gstools.covmodel.plot), 338
plot_variogram_yadrenko() (in module gstools.covmodel.plot), 338
plot_variogram() (in module gstools.covmodel.plot), 338
pos() (gstools.field.CondSRF property), 351
pos() (gstools.field.Field property), 357
pos() (gstools.field.SRF property), 345
pos() (gstools.krige.Detrended property), 423
pos() (gstools.krige.ExtDrift property), 414
pos() (gstools.krige.Krige property), 377
pos() (gstools.krige.Ordinary property), 396
pos() (gstools.krige.Simple property), 387
pos() (gstools.krige.Universal property), 405
post_field() (gstools.field.CondSRF method), 348
post_field() (gstools.field.Field method), 354
post_field() (gstools.field.SRF method), 342
pre_pos() (gstools.field.CondSRF method), 349
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pre_pos()</code></td>
<td>(gstatools.field.Field method), 354</td>
</tr>
<tr>
<td><code>pre_pos()</code></td>
<td>(gstatools.field.SRF method), 342</td>
</tr>
<tr>
<td><code>pre_pos()</code></td>
<td>(gstatools.krige.Detrended method), 419</td>
</tr>
<tr>
<td><code>pre_pos()</code></td>
<td>(gstatools.krige.ExtDrift method), 410</td>
</tr>
<tr>
<td><code>pre_pos()</code></td>
<td>(gstatools.krige.Krige method), 373</td>
</tr>
<tr>
<td><code>pre_pos()</code></td>
<td>(gstatools.krige.Ordinary method), 392</td>
</tr>
<tr>
<td><code>pre_pos()</code></td>
<td>(gstatools.krige.Simple method), 383</td>
</tr>
<tr>
<td><code>pre_pos()</code></td>
<td>(gstatools.krige.Universal method), 401</td>
</tr>
<tr>
<td><code>pseudo_inv()</code></td>
<td>(gstatools.krige.Detrended property), 423</td>
</tr>
<tr>
<td><code>pseudo_inv()</code></td>
<td>(gstatools.krige.ExtDrift property), 414</td>
</tr>
<tr>
<td><code>pseudo_inv()</code></td>
<td>(gstatools.krige.Krige property), 377</td>
</tr>
<tr>
<td><code>pseudo_inv()</code></td>
<td>(gstatools.krige.Ordinary property), 396</td>
</tr>
<tr>
<td><code>pseudo_inv()</code></td>
<td>(gstatools.krige.Simple property), 387</td>
</tr>
<tr>
<td><code>pseudo_inv()</code></td>
<td>(gstatools.krige.Universal property), 405</td>
</tr>
<tr>
<td><code>pseudo_inv_type()</code></td>
<td>(gstatools.krige.Detrended property), 423</td>
</tr>
<tr>
<td><code>pseudo_inv_type()</code></td>
<td>(gstatools.krige.ExtDrift property), 414</td>
</tr>
<tr>
<td><code>pseudo_inv_type()</code></td>
<td>(gstatools.krige.Krige property), 377</td>
</tr>
<tr>
<td><code>pseudo_inv_type()</code></td>
<td>(gstatools.krige.Ordinary property), 396</td>
</tr>
<tr>
<td><code>pseudo_inv_type()</code></td>
<td>(gstatools.krige.Simple property), 387</td>
</tr>
<tr>
<td><code>pseudo_inv_type()</code></td>
<td>(gstatools.krige.Universal property), 405</td>
</tr>
<tr>
<td><code>pykrige_angle()</code></td>
<td>(gstatools.covmodel.TPLGaussian property), 294</td>
</tr>
<tr>
<td><code>pykrige_angle()</code></td>
<td>(gstatools.covmodel.TPLSimple property), 335</td>
</tr>
<tr>
<td><code>pykrige_angle()</code></td>
<td>(gstatools.covmodel.TPLStable property), 322</td>
</tr>
<tr>
<td><code>pykrige_angle_x()</code></td>
<td>(gstatools.covmodel.Circular property), 230</td>
</tr>
<tr>
<td><code>pykrige_angle_x()</code></td>
<td>(gstatools.covmodel.CosModel property), 130</td>
</tr>
<tr>
<td><code>pykrige_angle_x()</code></td>
<td>(gstatools.covmodel.Cubic property), 206</td>
</tr>
<tr>
<td><code>pykrige_angle_x()</code></td>
<td>(gstatools.covmodel.Exponential property), 156</td>
</tr>
<tr>
<td><code>pykrige_angle_x()</code></td>
<td>(gstatools.covmodel.Gaussian property), 143</td>
</tr>
<tr>
<td><code>pykrige_angle_x()</code></td>
<td>(gstatools.covmodel.HyperSpherical property), 255</td>
</tr>
<tr>
<td><code>pykrige_angle_y()</code></td>
<td>(gstatools.covmodel.JBessel property), 280</td>
</tr>
<tr>
<td><code>pykrige_angle_y()</code></td>
<td>(gstatools.covmodel.Linear property), 218</td>
</tr>
<tr>
<td><code>pykrige_angle_y()</code></td>
<td>(gstatools.covmodel.Matern property), 169</td>
</tr>
<tr>
<td><code>pykrige_angle_y()</code></td>
<td>(gstatools.covmodel.Rational property), 194</td>
</tr>
<tr>
<td><code>pykrige_angle_y()</code></td>
<td>(gstatools.covmodel.Spherical property), 242</td>
</tr>
<tr>
<td><code>pykrige_angle_y()</code></td>
<td>(gstatools.covmodel.Stable property), 181</td>
</tr>
<tr>
<td><code>pykrige_angle_y()</code></td>
<td>(gstatools.covmodel.SuperSpherical property), 267</td>
</tr>
<tr>
<td><code>pykrige_angle_y()</code></td>
<td>(gstatools.covmodel.TPLExponential property), 308</td>
</tr>
<tr>
<td><code>pykrige_angle_y()</code></td>
<td>(gstatools.covmodel.TPLGaussian property), 294</td>
</tr>
<tr>
<td><code>pykrige_angle_y()</code></td>
<td>(gstatools.covmodel.TPLSimple property), 335</td>
</tr>
<tr>
<td><code>pykrige_angle_y()</code></td>
<td>(gstatools.covmodel.TPLStable property), 322</td>
</tr>
</tbody>
</table>
pykrige_angle_y() (gstools.covmodel.HyperSpherical property), 255
pykrige_angle_y() (gstools.covmodel.JBessel property), 280
pykrige_angle_y() (gstools.covmodel.Linear property), 219
pykrige_angle_y() (gstools.covmodel.Matern property), 169
pykrige_angle_y() (gstools.covmodel.Rational property), 194
pykrige_angle_y() (gstools.covmodel.Spherical property), 243
pykrige_angle_y() (gstools.covmodel.Stable property), 182
pykrige_angle_y() (gstools.covmodel.SuperSpherical property), 267
pykrige_angle_y() (gstools.covmodel.TPLExponential property), 308
pykrige_angle_z() (gstools.covmodel.JBessel property), 280
pykrige_angle_z() (gstools.covmodel.Linear property), 219
pykrige_angle_z() (gstools.covmodel.Matern property), 169
pykrige_angle_z() (gstools.covmodel.Rational property), 194
pykrige_angle_z() (gstools.covmodel.Spherical property), 243
pykrige_angle_z() (gstools.covmodel.Stable property), 182
pykrige_angle_z() (gstools.covmodel.SuperSpherical property), 267
pykrige_angle_z() (gstools.covmodel.TPLExponential property), 308
pykrige_angle_z() (gstools.covmodel.TPLGaussian property), 294
pykrige_angle_z() (gstools.covmodel.TPLSimple property), 335
pykrige_angle_z() (gstools.covmodel.TPLStable property), 322
pykrige_anis() (gstools.covmodel.Circular property), 231
pykrige_anis() (gstools.covmodel.CovModel property), 131
pykrige_anis() (gstools.covmodel.Cubic property), 207
pykrige_anis() (gstools.covmodel.Exponential property), 156
pykrige_anis() (gstools.covmodel.Gaussian property), 143
pykrige_anis() (gstools.covmodel.HyperSpherical property), 255
pykrige_anis() (gstools.covmodel.JBessel property), 280
pykrige_anis() (gstools.covmodel.Linear property), 219
pykrige_anis() (gstools.covmodel.Matern property), 169
pykrige_anis() (gstools.covmodel.Rational property), 194
pykrige_anis() (gstools.covmodel.Spherical property), 243
pykrige_anis() (gstools.covmodel.SuperSpherical property), 267
pykrige_anis() (gstools.covmodel.TPLExponential property), 308
pykrige_anis() (gstools.covmodel.TPLGaussian property), 294
pykrige_anis() (gstools.covmodel.TPLSimple property), 335
pykrige_anis() (gstools.covmodel.TPLStable property), 322
pykrige_anis_y() (gstools.covmodel.Circular property), 231
pykrige_anis_y() (gstools.covmodel.CovModel property), 131
pykrige_anis_y() (gstools.covmodel.Cubic property), 207
pykrige_anis_y() (gstools.covmodel.Exponential property), 156
pykrige_anis_y() (gstools.covmodel.Gaussian property), 143
pykrige_anis_y() (gstools.covmodel.HyperSpherical property), 255
pykrige_anis_y() (gstools.covmodel.JBessel property), 280
pykrige_anis_y() (gstools.covmodel.Linear property), 219
pykrige_anis_y() (gstools.covmodel.Matern property), 169
pykrige_anis_y() (gstools.covmodel.Rational property), 194
pykrige_anis_y() (gstools.covmodel.Spherical property), 243
pykrige_anis_y() (gstools.covmodel.Stable property), 182
pykrige_anis_y() (gstools.covmodel.SuperSpherical property), 267
pykrige_vario() (gstools.covmodel.Matern method), 165
pykrige_vario() (gstools.covmodel.Rational method), 190
pykrige_vario() (gstools.covmodel.Spherical method), 239
pykrige_vario() (gstools.covmodel.Stable method), 178
pykrige_vario() (gstools.covmodel.Superspherical method), 263
pykrige_vario() (gstools.covmodel.TPLExponential method), 304
pykrige_vario() (gstools.covmodel.TPLGaussian method), 290
pykrige_vario() (gstools.covmodel.TPLSimple method), 331
pykrige_vario() (gstools.covmodel.TPLStable method), 317

R
RandMeth (class in gstools.field.generator), 360
random() (gstools.random.RNG property), 425
Rational (class in gstools.covmodel), 183
remove_trend_norm_mean() (in module gstools.normalizer), 468
rescale() (gstools.covmodel.Circular property), 231
rescale() (gstools.covmodel.CovModel property), 131
rescale() (gstools.covmodel.Cubic property), 207
rescale() (gstools.covmodel.Exponential property), 156
rescale() (gstools.covmodel.Gaussian property), 143
rescale() (gstools.covmodel.HyperSpherical property), 255
rescale() (gstools.covmodel.JBessel property), 280
rescale() (gstools.covmodel.Linear property), 219
rescale() (gstools.covmodel.Matern property), 169
rescale() (gstools.covmodel.Rational property), 194
rescale() (gstools.covmodel.Spherical property), 243
rescale() (gstools.covmodel.Stable property), 182
rescale() (gstools.covmodel.Superspherical property), 267
rescale() (gstools.covmodel.TPLExponential property), 308
rescale() (gstools.covmodel.TPLGaussian property), 294
rescale() (gstools.covmodel.TPLSimple property), 335
rescale() (gstools.covmodel.TPLStable property), 322
reset_seed() (gstools.field.generator.IncomprRandMeth method), 359
reset_seed() (gstools.field.generator.RandMeth method), 362

RNG (class in gstools.random), 424
rotated_main_axes() (in module gstools.tools), 433
rotation_planes() (in module gstools.tools), 434

S
sample_dist() (gstools.random.RNG method), 424
sample_ln_pdf() (gstools.random.RNG method), 424
sample_sphere() (gstools.random.RNG method), 425
sampling() (gstools.field.generator.IncomprRandMeth property), 360
sampling() (gstools.field.generator.RandMeth property), 362
seed() (gstools.field.generator.IncomprRandMeth property), 360
seed() (gstools.field.generator.RandMeth property), 362

set_arg_bounds() (gstools.covmodel.Circular method), 227
set_arg_bounds() (gstools.covmodel.CovModel method), 126
set_arg_bounds() (gstools.covmodel.Cubic method), 203
set_arg_bounds() (gstools.covmodel.Exponential method), 152
set_arg_bounds() (gstools.covmodel.Gaussian method), 139
set_arg_bounds() (gstools.covmodel.HyperSpherical method), 251
set_arg_bounds() (gstools.covmodel.JBessel method), 276
set_arg_bounds() (gstools.covmodel.Linear method), 215
set_arg_bounds() (gstools.covmodel.Matern method), 165
set_arg_bounds() (gstools.covmodel.Rational method), 190
set_arg_bounds() (gstools.covmodel.Spherical method), 239
set_arg_bounds() (gstools.covmodel.Stable method), 178
set_arg_bounds() (gstools.covmodel.Superspherical method), 263
set_arg_bounds() (gstools.covmodel.TPLExponential method), 304
set_arg_bounds() (gstools.covmodel.TPLGaussian method), 290
vario_nugget() (gstools.covmodel.CovModel method), 127
vario_nugget() (gstools.covmodel.Cubic method), 203
vario_nugget() (gstools.covmodel.Exponential method), 152
vario_nugget() (gstools.covmodel.Gaussian method), 140
vario_nugget() (gstools.covmodel.HyperSpherical method), 251
vario_nugget() (gstools.covmodel.JBessel method), 276
vario_nugget() (gstools.covmodel.Linear method), 215
vario_nugget() (gstools.covmodel.Matern method), 166
vario_nugget() (gstools.covmodel.Rational method), 191
vario_nugget() (gstools.covmodel.Spherical method), 239
vario_nugget() (gstools.covmodel.Stable method), 239
vario_nugget() (gstools.covmodel.SuperSpherical method), 264
vario_nugget() (gstools.covmodel.TPLExponential method), 304
vario_nugget() (gstools.covmodel.TPLGaussian method), 290
vario_nugget() (gstools.covmodel.TPLSimple method), 332
vario_nugget() (gstools.covmodel.TPLStable method), 318
vario_nugget() (gstools.covmodel.TPLExponential method), 304
vario_nugget() (gstools.covmodel.TPLGaussian method), 290
vario_nugget() (gstools.covmodel.TPLSimple method), 332
vario_nugget() (gstools.covmodel.TPLStable method), 318
vario_spatial() (gstools.covmodel.Circular method), 227
vario_spatial() (gstools.covmodel.CovModel method), 127
vario_spatial() (gstools.covmodel.Cubic method), 203
vario_spatial() (gstools.covmodel.Exponential method), 153
vario_spatial() (gstools.covmodel.Gaussian method), 140
vario_spatial() (gstools.covmodel.HyperSpherical method), 251
vario_spatial() (gstools.covmodel.JBessel method), 277
vario_spatial() (gstools.covmodel.Linear method), 215
vario_spatial() (gstools.covmodel.Matern method), 166
vario_spatial() (gstools.covmodel.Rational method), 191
vario_spatial() (gstools.covmodel.Spherical method), 239
vario_spatial() (gstools.covmodel.Stable method), 239
vario_spatial() (gstools.covmodel.SuperSpherical method), 264
vario_spatial() (gstools.covmodel.TPLExponential method), 304
vario_spatial() (gstools.covmodel.TPLGaussian method), 290
vario_spatial() (gstools.covmodel.TPLSimple method), 332
vario_spatial() (gstools.covmodel.TPLStable method), 318
vario_yadrenko() (gstools.covmodel.Circular method), 227
vario_yadrenko() (gstools.covmodel.CovModel method), 127
vario_yadrenko() (gstools.covmodel.Cubic method), 203
vario_yadrenko() (gstools.covmodel.Exponential method), 153
vario_yadrenko() (gstools.covmodel.HyperSpherical method), 251
vario_yadrenko() (gstools.covmodel.JBessel method), 277
vario_yadrenko() (gstools.covmodel.Linear method), 215
vario_yadrenko() (gstools.covmodel.Matern method), 166
vario_yadrenko() (gstools.covmodel.Rational method), 191
vario_yadrenko() (gstools.covmodel.Spherical method), 239
vario_yadrenko() (gstools.covmodel.Stable method), 239
vario_yadrenko() (gstools.covmodel.SuperSpherical method), 264
vario_yadrenko() (gstools.covmodel.TPLExponential method), 304
vario_yadrenko() (gstools.covmodel.TPLGaussian method), 290
vario_yadrenko() (gstools.covmodel.TPLSimple method), 332
vario_yadrenko() (gstools.covmodel.TPLStable method), 318
variogram() (gstools.covmodel.Circular method), 227
variogram() (gstools.covmodel.Cubic method), 203
variogram() (gstools.covmodel.Exponential method), 153
variogram() (gstools.covmodel.Gaussian method), 140
variogram() (gstools.covmodel.HyperSpherical method), 251
variogram() (gstools.covmodel.JBessel method), 277
variogram() (gstools.covmodel.Linear method), 215
variogram() (gstools.covmodel.Matern method), 166
variogram() (gstools.covmodel.Rational method), 191
variogram() (gstools.covmodel.Spherical method), 239
variogram() (gstools.covmodel.Stable method), 239
variogram() (gstools.covmodel.TPLExponential method), 304
variogram() (gstools.covmodel.TPLGaussian method), 290
variogram() (gstools.covmodel.TPLSimple method), 332
variogram() (gstools.covmodel.TPLStable method), 318

Index 515
variogram() (gstools.covmodel.Matern method), 166
variogram() (gstools.covmodel.Rational method), 191
variogram() (gstools.covmodel.Spherical method), 239
variogram() (gstools.covmodel.Stable method), 178
variogram() (gstools.covmodel.SuperSpherical method), 264
variogram() (gstools.covmodel.TPLExponential method), 304
variogram() (gstools.covmodelTPLGaussian method), 290
variogram() (gstools.covmodel.TPLSimple method), 332
variogram() (gstools.covmodel.TPLStable method), 318
verbose() (gstools.field.generator.IncomprRandMeth property), 360
verbose() (gstools.field.generator.RandMeth property), 363
vtk_export() (gstools.field.CondSRF method), 350
vtk_export() (gstools.field.Field method), 356
vtk_export() (gstools.field.SRF method), 344
vtk_export() (gstools.krige.Detrended method), 421
vtk_export() (gstools.krige.ExtDrift method), 412
vtk_export() (gstools.krige.Krige method), 375
vtk_export() (gstools.krige.Ordinary method), 394
vtk_export() (gstools.krige.Simple method), 385
vtk_export() (gstools.krige.Universal method), 403
vtk_export() (in module gstools.tools), 428
vtk_export_structured() (in module gstools.tools), 428
vtk_export_unstructured() (in module gstools.tools), 428

Y
YeoJohnson (class in gstools.normalizer), 459
Z
zinnharvey() (in module gstools.transform), 440