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GSTools Quickstart

[image: _images/gstools.png]
Get in Touch!
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Purpose

GeoStatTools provides geostatistical tools for various purposes:


	random field generation


	simple, ordinary, universal and external drift kriging


	conditioned field generation


	incompressible random vector field generation


	(automated) variogram estimation and fitting


	directional variogram estimation and modelling


	data normalization and transformation


	many readily provided and even user-defined covariance models


	metric spatio-temporal modelling


	plotting and exporting routines







Installation


conda

GSTools can be installed via
conda [https://docs.conda.io/en/latest/miniconda.html] on Linux, Mac, and
Windows.
Install the package by typing the following command in a command terminal:

conda install gstools





In case conda forge is not set up for your system yet, see the easy to follow
instructions on conda forge [https://github.com/conda-forge/gstools-feedstock#installing-gstools].
Using conda, the parallelized version of GSTools should be installed.




pip

GSTools can be installed via pip [https://pypi.org/project/gstools/]
on Linux, Mac, and Windows.
On Windows you can install WinPython [https://winpython.github.io/] to get
Python and pip running.
Install the package by typing the following into command in a command terminal:

pip install gstools





To get the latest development version you can install it directly from GitHub:

pip install git+git://github.com/GeoStat-Framework/GSTools.git@develop





If something went wrong during installation, try the -I flag from pip [https://pip-python3.readthedocs.io/en/latest/reference/pip_install.html?highlight=i#cmdoption-i].

To enable the OpenMP support, you have to provide a C compiler and OpenMP.
Parallel support is controlled by an environment variable GSTOOLS_BUILD_PARALLEL,
that can be 0 or 1 (interpreted as 0 if not present).
GSTools then needs to be installed from source:

export GSTOOLS_BUILD_PARALLEL=1
pip install --no-binary=gstools gstools





Note, that the --no-binary=gstools option forces pip to not use a wheel for GSTools.

For the development version, you can do almost the same:

export GSTOOLS_BUILD_PARALLEL=1
pip install git+git://github.com/GeoStat-Framework/GSTools.git@develop










Citation

At the moment you can cite the Zenodo code publication of GSTools:


Sebastian Müller & Lennart Schüler. GeoStat-Framework/GSTools. Zenodo. https://doi.org/10.5281/zenodo.1313628



If you want to cite a specific version, have a look at the Zenodo site.

A publication for the GeoStat-Framework is in preperation.




Tutorials and Examples

The documentation also includes some tutorials,
showing the most important use cases of GSTools, which are


	Random Field Generation


	The Covariance Model


	Variogram Estimation


	Random Vector Field Generation


	Kriging


	Conditioned random field generation


	Field transformations


	Geographic Coordinates


	Spatio-Temporal Modelling


	Normalizing Data


	Miscellaneous examples







Spatial Random Field Generation

The core of this library is the generation of spatial random fields.
These fields are generated using the randomisation method, described by
Heße et al. 2014 [https://doi.org/10.1016/j.envsoft.2014.01.013].


Examples


Gaussian Covariance Model

This is an example of how to generate a 2 dimensional spatial random field (SRF)
with a Gaussian covariance model.

import gstools as gs
# structured field with a size 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.plot()





[image: _images/gau_field.png]
GSTools also provides support for geographic coordinates [https://en.wikipedia.org/wiki/Geographic_coordinate_system].
This works perfectly well with cartopy [https://scitools.org.uk/cartopy/docs/latest/index.html].

import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import gstools as gs
# define a structured field by latitude and longitude
lat = lon = range(-80, 81)
model = gs.Gaussian(latlon=True, len_scale=777, rescale=gs.EARTH_RADIUS)
srf = gs.SRF(model, seed=12345)
field = srf.structured((lat, lon))
# Orthographic plotting with cartopy
ax = plt.subplot(projection=ccrs.Orthographic(-45, 45))
cont = ax.contourf(lon, lat, field, transform=ccrs.PlateCarree())
ax.coastlines()
ax.set_global()
plt.colorbar(cont)





[image: _images/GS_globe.png]
A similar example but for a three dimensional field is exported to a
VTK [https://vtk.org/] file, which can be visualized with
ParaView [https://www.paraview.org/] or
PyVista [https://docs.pyvista.org] in Python:

import gstools as gs
# structured field with a size 100x100x100 and a grid-size of 1x1x1
x = y = z = range(100)
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2))
srf = gs.SRF(model)
srf((x, y, z), mesh_type='structured')
srf.vtk_export('3d_field') # Save to a VTK file for ParaView

mesh = srf.to_pyvista() # Create a PyVista mesh for plotting in Python
mesh.contour(isosurfaces=8).plot()





[image: _images/GS_pyvista.png]







Estimating and fitting variograms

The spatial structure of a field can be analyzed with the variogram, which contains the same information as the covariance function.

All covariance models can be used to fit given variogram data by a simple interface.


Examples

This is an example of how to estimate the variogram of a 2 dimensional unstructured field and estimate the parameters of the covariance
model again.

import numpy as np
import gstools as gs
# generate a synthetic field with an exponential model
x = np.random.RandomState(19970221).rand(1000) * 100.
y = np.random.RandomState(20011012).rand(1000) * 100.
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))
# estimate the variogram of the field
bin_center, gamma = gs.vario_estimate((x, y), field)
# fit the variogram with a stable model. (no nugget fitted)
fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
# output
ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)
print(fit_model)





Which gives:

Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, anis=[1.0], angles=[0.0], alpha=1.09)





[image: _images/GS_vario_est.png]





Kriging and Conditioned Random Fields

An important part of geostatistics is Kriging and conditioning spatial random
fields to measurements. With conditioned random fields, an ensemble of field realizations
with their variability depending on the proximity of the measurements can be generated.


Example

For better visualization, we will condition a 1d field to a few “measurements”,
generate 100 realizations and plot them:

import numpy as np
import matplotlib.pyplot as plt
import gstools as gs

# conditions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

gridx = np.linspace(0.0, 15.0, 151)

# conditioned spatial random field class
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
krige = gs.krige.Ordinary(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)

# generate the ensemble of field realizations
fields = []
for i in range(100):
    fields.append(cond_srf(gridx, seed=i))
    plt.plot(gridx, fields[i], color="k", alpha=0.1)
plt.scatter(cond_pos, cond_val, color="k")
plt.show()





[image: _images/cond_ens.png]





User defined covariance models

One of the core-features of GSTools is the powerful
CovModel
class, which allows to easy define covariance models by the user.


Example

Here we re-implement the Gaussian covariance model by defining just the
correlation [https://en.wikipedia.org/wiki/Autocovariance#Normalization] function,
which takes a non-dimensional distance h = r/l

import numpy as np
import gstools as gs
# use CovModel as the base-class
class Gau(gs.CovModel):
    def cor(self, h):
        return np.exp(-h**2)





And that’s it! With Gau you now have a fully working covariance model,
which you could use for field generation or variogram fitting as shown above.






Incompressible Vector Field Generation

Using the original Kraichnan method [https://doi.org/10.1063/1.1692799], incompressible random
spatial vector fields can be generated.


Example

import numpy as np
import gstools as gs
x = np.arange(100)
y = np.arange(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator='VectorField', seed=19841203)
srf((x, y), mesh_type='structured')
srf.plot()





yielding

[image: _images/vec_srf_tut_gau.png]





VTK/PyVista Export

After you have created a field, you may want to save it to file, so we provide
a handy VTK [https://www.vtk.org/] export routine using the vtk_export() or you could
create a VTK/PyVista dataset for use in Python with to to_pyvista() method:

import gstools as gs
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)
srf((x, y), mesh_type='structured')
srf.vtk_export("field") # Saves to a VTK file
mesh = srf.to_pyvista() # Create a VTK/PyVista dataset in memory
mesh.plot()





Which gives a RectilinearGrid VTK file field.vtr or creates a PyVista mesh
in memory for immediate 3D plotting in Python.

[image: _images/pyvista_export.png]



Requirements


	Numpy >= 1.14.5 [http://www.numpy.org]


	SciPy >= 1.1.0 [http://www.scipy.org]


	hankel >= 1.0.2 [https://github.com/steven-murray/hankel]


	emcee >= 3.0.0 [https://github.com/dfm/emcee]


	pyevtk >= 1.1.1 [https://github.com/pyscience-projects/pyevtk]


	meshio>=4.0.3, <5.0 [https://github.com/nschloe/meshio]





Optional


	matplotlib [https://matplotlib.org]


	pyvista [https://docs.pyvista.org]







Contact

You can contact us via info@geostat-framework.org.






License

LGPLv3 [https://github.com/GeoStat-Framework/GSTools/blob/master/LICENSE]







            

          

      

      

    

  

    
      
          
            
  
GSTools Tutorials

In the following you will find several Tutorials on how to use GSTools to
explore its whole beauty and power.



	Random Field Generation

	The Covariance Model

	Variogram Estimation

	Random Vector Field Generation

	Kriging

	Conditioned Fields

	Field transformations

	Geographic Coordinates

	Spatio-Temporal Modeling

	Normalizing Data

	Miscellaneous Tutorials









            

          

      

      

    

  

    
      
          
            
  
Random Field Generation

The main feature of GSTools is the spatial random field generator SRF,
which can generate random fields following a given covariance model.
The generator provides a lot of nice features, which will be explained in
the following

GSTools generates spatial random fields with a given covariance model or
semi-variogram. This is done by using the so-called randomization method.
The spatial random field is represented by a stochastic Fourier integral
and its discretised modes are evaluated at random frequencies.

GSTools supports arbitrary and non-isotropic covariance models.


Examples


[image: A Very Simple Example]
A Very Simple Example








[image: Creating an Ensemble of Fields]
Creating an Ensemble of Fields








[image: Creating Fancier Fields]
Creating Fancier Fields








[image: Using an Unstructured Grid]
Using an Unstructured Grid








[image: Merging two Fields]
Merging two Fields








[image: Generating Fields on Meshes]
Generating Fields on Meshes








[image: Using PyVista meshes]
Using PyVista meshes








[image: Higher Dimensions]
Higher Dimensions








Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]







            

          

      

      

    

  

    
      
          
            
  
Note

Click here
to download the full example code




A Very Simple Example

We are going to start with a very simple example of a spatial random field
with an isotropic Gaussian covariance model and following parameters:


	variance [image: \sigma^2=1]


	correlation length [image: \lambda=10]




First, we set things up and create the axes for the field. We are going to
need the SRF class for the actual generation of the spatial random field.
But SRF also needs a covariance model and we will simply take the
Gaussian model.

import gstools as gs

x = y = range(100)





Now we create the covariance model with the parameters [image: \sigma^2] and
[image: \lambda] and hand it over to SRF. By specifying a seed,
we make sure to create reproducible results:

model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, seed=20170519)





With these simple steps, everything is ready to create our first random field.
We will create the field on a structured grid (as you might have guessed from
the x and y), which makes it easier to plot.

field = srf.structured([x, y])
srf.plot()





[image: Field 2D structured: (100, 100)]
Wow, that was pretty easy!

Total running time of the script: ( 0 minutes  0.755 seconds)



Download Python source code: 00_gaussian.py




Download Jupyter notebook: 00_gaussian.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here
to download the full example code




Creating an Ensemble of Fields

Creating an ensemble of random fields would also be
a great idea. Let’s reuse most of the previous code.

import numpy as np
import matplotlib.pyplot as pt
import gstools as gs

x = y = np.arange(100)

model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model)





This time, we did not provide a seed to SRF, as the seeds will used
during the actual computation of the fields. We will create four ensemble
members, for better visualisation and save them in a list and in a first
step, we will be using the loop counter as the seeds.

ens_no = 4
field = []
for i in range(ens_no):
    field.append(srf.structured([x, y], seed=i))





Now let’s have a look at the results:

fig, ax = pt.subplots(2, 2, sharex=True, sharey=True)
ax = ax.flatten()
for i in range(ens_no):
    ax[i].imshow(field[i].T, origin="lower")
pt.show()





[image: 01 srf ensemble]

Using better Seeds

It is not always a good idea to use incrementing seeds. Therefore GSTools
provides a seed generator MasterRNG. The loop, in which the fields are
generated would then look like

from gstools.random import MasterRNG

seed = MasterRNG(20170519)
for i in range(ens_no):
    field.append(srf.structured([x, y], seed=seed()))





Total running time of the script: ( 0 minutes  4.157 seconds)



Download Python source code: 01_srf_ensemble.py




Download Jupyter notebook: 01_srf_ensemble.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]







            

          

      

      

    

  

    
      
          
            
  
Note

Click here
to download the full example code




Creating Fancier Fields

Only using Gaussian covariance fields gets boring. Now we are going to create
much rougher random fields by using an exponential covariance model and we are going to make them anisotropic.

The code is very similar to the previous examples, but with a different
covariance model class Exponential. As model parameters we a using
following


	variance [image: \sigma^2=1]


	correlation length [image: \lambda=(12, 3)^T]


	rotation angle [image: \theta=\pi/8]




import numpy as np
import gstools as gs

x = y = np.arange(100)
model = gs.Exponential(dim=2, var=1, len_scale=[12.0, 3.0], angles=np.pi / 8)
srf = gs.SRF(model, seed=20170519)
srf.structured([x, y])
srf.plot()





[image: Field 2D structured: (100, 100)]
The anisotropy ratio could also have been set with

model = gs.Exponential(dim=2, var=1, len_scale=12, anis=0.25, angles=np.pi / 8)





Total running time of the script: ( 0 minutes  1.063 seconds)



Download Python source code: 02_fancier.py




Download Jupyter notebook: 02_fancier.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here
to download the full example code




Using an Unstructured Grid

For many applications, the random fields are needed on an unstructured grid.
Normally, such a grid would be read in, but we can simply generate one and
then create a random field at those coordinates.

import numpy as np
import gstools as gs





Creating our own unstructured grid

seed = gs.random.MasterRNG(19970221)
rng = np.random.RandomState(seed())
x = rng.randint(0, 100, size=10000)
y = rng.randint(0, 100, size=10000)

model = gs.Exponential(dim=2, var=1, len_scale=[12, 3], angles=np.pi / 8)
srf = gs.SRF(model, seed=20170519)
field = srf((x, y))
srf.vtk_export("field")
# Or create a PyVista dataset
# mesh = srf.to_pyvista()





ax = srf.plot()
ax.set_aspect("equal")





[image: Field 2D unstructured: (10000,)]
Comparing this image to the previous one, you can see that be using the same
seed, the same field can be computed on different grids.

Total running time of the script: ( 0 minutes  1.123 seconds)



Download Python source code: 03_unstr_srf_export.py




Download Jupyter notebook: 03_unstr_srf_export.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here
to download the full example code




Merging two Fields

We can even generate the same field realisation on different grids. Let’s try
to merge two unstructured rectangular fields.

import numpy as np
import gstools as gs

# creating our own unstructured grid
seed = gs.random.MasterRNG(19970221)
rng = np.random.RandomState(seed())
x = rng.randint(0, 100, size=10000)
y = rng.randint(0, 100, size=10000)

model = gs.Exponential(dim=2, var=1, len_scale=[12, 3], angles=np.pi / 8)
srf = gs.SRF(model, seed=20170519)
field1 = srf((x, y))
srf.plot()





[image: Field 2D unstructured: (10000,)]
But now we extend the field on the right hand side by creating a new
unstructured grid and calculating a field with the same parameters and the
same seed on it:

# new grid
seed = gs.random.MasterRNG(20011012)
rng = np.random.RandomState(seed())
x2 = rng.randint(99, 150, size=10000)
y2 = rng.randint(20, 80, size=10000)

field2 = srf((x2, y2))
ax = srf.plot()
ax.tricontourf(x, y, field1.T, levels=256)
ax.set_aspect("equal")





[image: Field 2D unstructured: (10000,)]
The slight mismatch where the two fields were merged is merely due to
interpolation problems of the plotting routine. You can convince yourself
be increasing the resolution of the grids by a factor of 10.

Of course, this merging could also have been done by appending the grid
point (x2, y2) to the original grid (x, y) before generating the field.
But one application scenario would be to generate hugh fields, which would not
fit into memory anymore.

Total running time of the script: ( 0 minutes  2.450 seconds)



Download Python source code: 04_srf_merge.py




Download Jupyter notebook: 04_srf_merge.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]
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Click here
to download the full example code




Generating Fields on Meshes

GSTools provides an interface for meshes, to support
meshio [https://github.com/nschloe/meshio] and
ogs5py [https://github.com/GeoStat-Framework/ogs5py] meshes.

When using meshio, the generated fields will be stored immediately in the
mesh container.

There are two options to generate a field on a given mesh:


	points=”points” will generate a field on the mesh points


	points=”centroids” will generate a field on the cell centroids




In this example, we will generate a simple mesh with the aid of
meshzoo [https://github.com/nschloe/meshzoo].

import numpy as np
import matplotlib.pyplot as plt
import matplotlib.tri as tri
import meshzoo
import meshio
import gstools as gs

# generate a triangulated hexagon with meshzoo
points, cells = meshzoo.ngon(6, 4)
mesh = meshio.Mesh(points, {"triangle": cells})





Now we prepare the SRF class as always. We will generate an ensemble of
fields on the generated mesh.

# number of fields
fields_no = 12
# model setup
model = gs.Gaussian(dim=2, len_scale=0.5)
srf = gs.SRF(model, mean=1)





To generate fields on a mesh, we provide a separate method: SRF.mesh.
First we generate fields on the mesh-centroids controlled by a seed.
You can specify the field name by the keyword name.

for i in range(fields_no):
    srf.mesh(mesh, points="centroids", name="c-field-{}".format(i), seed=i)





Now we generate fields on the mesh-points again controlled by a seed.

for i in range(fields_no):
    srf.mesh(mesh, points="points", name="p-field-{}".format(i), seed=i)





To get an impression we now want to plot the generated fields.
Luckily, matplotlib supports triangular meshes.

triangulation = tri.Triangulation(points[:, 0], points[:, 1], cells)
# figure setup
cols = 4
rows = int(np.ceil(fields_no / cols))





Cell data can be easily visualized with matplotlibs tripcolor.
To highlight the cell structure, we use triplot.

fig = plt.figure(figsize=[2 * cols, 2 * rows])
for i, field in enumerate(mesh.cell_data, 1):
    ax = fig.add_subplot(rows, cols, i)
    ax.tripcolor(triangulation, mesh.cell_data[field][0])
    ax.triplot(triangulation, linewidth=0.5, color="k")
    ax.set_aspect("equal")
fig.tight_layout()





[image: 05 mesh ensemble]
Point data is plotted via tricontourf.

fig = plt.figure(figsize=[2 * cols, 2 * rows])
for i, field in enumerate(mesh.point_data, 1):
    ax = fig.add_subplot(rows, cols, i)
    ax.tricontourf(triangulation, mesh.point_data[field])
    ax.triplot(triangulation, linewidth=0.5, color="k")
    ax.set_aspect("equal")
fig.tight_layout()
plt.show()





[image: 05 mesh ensemble]
Last but not least, meshio can be used for what is does best: Exporting.
Tada!

mesh.write("mesh_ensemble.vtk")





Out:

WARNING:root:VTK requires 3D points, but 2D points given. Appending 0 third component.





Total running time of the script: ( 0 minutes  1.727 seconds)



Download Python source code: 05_mesh_ensemble.py




Download Jupyter notebook: 05_mesh_ensemble.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]
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Click here
to download the full example code




Using PyVista meshes

PyVista [https://www.pyvista.org] is a helper module for the
Visualization Toolkit (VTK) that takes a different approach on interfacing with
VTK through NumPy and direct array access.

It provides mesh data structures and filtering methods for spatial datasets,
makes 3D plotting simple and is built for large/complex data geometries.

The Field.mesh method enables easy field creation on PyVista meshes
used by the SRF or Krige class.

import pyvista as pv
import gstools as gs





We create a structured grid with PyVista containing 50 segments on all three
axes each with a length of 2 (whatever unit).

dim, spacing = (50, 50, 50), (2, 2, 2)
grid = pv.UniformGrid(dim, spacing)





Now we set up the SRF class as always. We’ll use an anisotropic model.

model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=(0.8, 0.4, 0.2))
srf = gs.SRF(model, seed=19970221)





The PyVista mesh can now be directly passed to the SRF.mesh method.
When dealing with meshes, one can choose if the field should be generated
on the mesh-points (“points”) or the cell-centroids (“centroids”).

In addition we can set a name, under which the resulting field is stored
in the mesh.

srf.mesh(grid, points="points", name="random-field")





Now we have access to PyVista’s abundancy of methods to explore the field.


Note

PyVista is not working on readthedocs, but you can try it out yourself by
uncommenting the following line of code.



# grid.contour(isosurfaces=8).plot()





The result should look like this:

[image: ../../_images/GS_pyvista_cut.png]
Total running time of the script: ( 0 minutes  7.304 seconds)



Download Python source code: 06_pyvista_support.py




Download Jupyter notebook: 06_pyvista_support.ipynb
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Higher Dimensions

GSTools provides experimental support for higher dimensions.

Anisotropy is the same as in lower dimensions:


	in n dimensions we need (n-1) anisotropy ratios




Rotation on the other hand is a bit more complex.
With increasing dimensions more and more rotation angles are added in order
to properply describe the rotated axes of anisotropy.

By design the first rotation angles coincide with the lower ones:


	2D (rotation in x-y plane) -> 3D: first angle describes xy-plane rotation


	3D (Tait-Bryan angles) -> 4D: first 3 angles coincide with Tait-Bryan angles




By increasing the dimension from n to (n+1), n angles are added:


	2D (1 angle) -> 3D: 3 angles (2 added)


	3D (3 angles) -> 4D: 6 angles (3 added)




the following list of rotation-planes are described by the list of
angles in the model:


	x-y plane


	x-z plane


	y-z plane


	x-v plane


	y-v plane


	z-v plane


	…




The rotation direction in these planes have alternating signs
in order to match Tait-Bryan in 3D.

Let’s have a look at a 4D example, where we naively add a 4th dimension.

import matplotlib.pyplot as plt
import gstools as gs

dim = 4
size = 20
pos = [range(size)] * dim
model = gs.Exponential(dim=dim, len_scale=5)
srf = gs.SRF(model, seed=20170519)
field = srf.structured(pos)





In order to “prove” correctness, we can calculate an empirical variogram
of the generated field and fit our model to it.

bin_center, vario = gs.vario_estimate(
    pos, field, sampling_size=2000, mesh_type="structured"
)
model.fit_variogram(bin_center, vario)
print(model)





Out:

Exponential(dim=4, var=0.929, len_scale=4.85, nugget=1.07e-12)





As you can see, the estimated variance and length scale match our input
quite well.

Let’s have a look at the fit and a x-y cross-section of the 4D field:

f, a = plt.subplots(1, 2, gridspec_kw={"width_ratios": [2, 1]}, figsize=[9, 3])
model.plot(x_max=max(bin_center), ax=a[0])
a[0].scatter(bin_center, vario)
a[1].imshow(field[:, :, 0, 0].T, origin="lower")
a[0].set_title("isotropic empirical variogram with fitted model")
a[1].set_title("x-y cross-section")
f.show()





[image: isotropic empirical variogram with fitted model, x-y cross-section]
GSTools also provides plotting routines for higher dimensions.
Fields are shown by 2D cross-sections, where other dimensions can be
controlled via sliders.

srf.plot()





[image: Field 4D structured (20, 20, 20, 20),   Plane]
Total running time of the script: ( 0 minutes  10.987 seconds)



Download Python source code: 07_higher_dimensions.py




Download Jupyter notebook: 07_higher_dimensions.ipynb
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The Covariance Model

One of the core-features of GSTools is the powerful CovModel
class, which allows you to easily define arbitrary covariance models by
yourself. The resulting models provide a bunch of nice features to explore the
covariance models.

A covariance model is used to characterize the
semi-variogram [https://en.wikipedia.org/wiki/Variogram#Semivariogram],
denoted by [image: \gamma], of a spatial random field.
In GSTools, we use the following form for an isotropic and stationary field:


[image: \gamma\left(r\right)= \sigma^2\cdot\left(1-\mathrm{cor}\left(s\cdot\frac{r}{\ell}\right)\right)+n]


Where:



	[image: r] is the lag distance


	[image: \ell] is the main correlation length


	[image: s] is a scaling factor for unit conversion or normalization


	[image: \sigma^2] is the variance


	[image: n] is the nugget (subscale variance)


	[image: \mathrm{cor}(h)] is the normalized correlation function depending on
the non-dimensional distance [image: h=s\cdot\frac{r}{\ell}]







Depending on the normalized correlation function, all covariance models in
GSTools are providing the following functions:



	[image: \rho(r)=\mathrm{cor}\left(s\cdot\frac{r}{\ell}\right)]
is the so called
correlation [https://en.wikipedia.org/wiki/Autocovariance#Normalization]
function


	[image: C(r)=\sigma^2\cdot\rho(r)] is the so called
covariance [https://en.wikipedia.org/wiki/Covariance_function]
function, which gives the name for our GSTools class








Note

We are not limited to isotropic models. GSTools supports anisotropy ratios
for length scales in orthogonal transversal directions like:


	[image: x_0] (main direction)


	[image: x_1] (1. transversal direction)


	[image: x_2] (2. transversal direction)


	…




These main directions can also be rotated.
Just have a look at the corresponding examples.




Provided Covariance Models

The following standard covariance models are provided by GSTools







	Gaussian([dim, var, len_scale, nugget, …])

	The Gaussian covariance model.



	Exponential([dim, var, len_scale, nugget, …])

	The Exponential covariance model.



	Matern([dim, var, len_scale, nugget, anis, …])

	The Matérn covariance model.



	Stable([dim, var, len_scale, nugget, anis, …])

	The stable covariance model.



	Rational([dim, var, len_scale, nugget, …])

	The rational quadratic covariance model.



	Cubic([dim, var, len_scale, nugget, anis, …])

	The Cubic covariance model.



	Linear([dim, var, len_scale, nugget, anis, …])

	The bounded linear covariance model.



	Circular([dim, var, len_scale, nugget, …])

	The circular covariance model.



	Spherical([dim, var, len_scale, nugget, …])

	The Spherical covariance model.



	HyperSpherical([dim, var, len_scale, …])

	The Hyper-Spherical covariance model.



	SuperSpherical([dim, var, len_scale, …])

	The Super-Spherical covariance model.



	JBessel([dim, var, len_scale, nugget, anis, …])

	The J-Bessel hole model.



	TPLSimple([dim, var, len_scale, nugget, …])

	The simply truncated power law model.






As a special feature, we also provide truncated power law (TPL) covariance models







	TPLGaussian([dim, var, len_scale, nugget, …])

	Truncated-Power-Law with Gaussian modes.



	TPLExponential([dim, var, len_scale, …])

	Truncated-Power-Law with Exponential modes.



	TPLStable([dim, var, len_scale, nugget, …])

	Truncated-Power-Law with Stable modes.






These models provide a lower and upper length scale truncation
for superpositioned models.




Examples


[image: Introductory example]
Introductory example








[image: Basic Methods]
Basic Methods








[image: Anisotropy and Rotation]
Anisotropy and Rotation








[image: Spectral methods]
Spectral methods








[image: Different scales]
Different scales








[image: Additional Parameters]
Additional Parameters








[image: Fitting variogram data]
Fitting variogram data
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Introductory example

Let us start with a short example of a self defined model (Of course, we
provide a lot of predefined models [See: gstools.covmodel],
but they all work the same way).
Therefore we reimplement the Gaussian covariance model
by defining just the “normalized”
correlation [https://en.wikipedia.org/wiki/Autocovariance#Normalization]
function:

import numpy as np
import gstools as gs


# use CovModel as the base-class
class Gau(gs.CovModel):
    def cor(self, h):
        return np.exp(-(h ** 2))





Here the parameter h stands for the normalized range r / len_scale.
Now we can instantiate this model:

model = Gau(dim=2, var=2.0, len_scale=10)





To have a look at the variogram, let’s plot it:

model.plot()





[image: 00 intro]
This is almost identical to the already provided Gaussian model.
There, a scaling factor is implemented so the len_scale coincides with the
integral scale:

gau_model = gs.Gaussian(dim=2, var=2.0, len_scale=10)
gau_model.plot()





[image: 00 intro]

Parameters

We already used some parameters, which every covariance models has.
The basic ones are:



	dim : dimension of the model


	var : variance of the model (on top of the subscale variance)


	len_scale : length scale of the model


	nugget : nugget (subscale variance) of the model







These are the common parameters used to characterize
a covariance model and are therefore used by every model in GSTools.
You can also access and reset them:

print("old model:", model)
model.dim = 3
model.var = 1
model.len_scale = 15
model.nugget = 0.1
print("new model:", model)





Out:

old model: Gau(dim=2, var=2.0, len_scale=10.0, nugget=0.0)
new model: Gau(dim=3, var=1.0, len_scale=15.0, nugget=0.1)






Note


	The sill of the variogram is calculated by sill = variance + nugget
So we treat the variance as everything above the nugget,
which is sometimes called partial sill.


	A covariance model can also have additional parameters.






Total running time of the script: ( 0 minutes  0.219 seconds)



Download Python source code: 00_intro.py




Download Jupyter notebook: 00_intro.ipynb
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Basic Methods

The covariance model class CovModel of GSTools provides a set of handy
methods.

One of the following functions defines the main characterization of the
variogram:


	CovModel.variogram : The variogram of the model given by


[image: \gamma\left(r\right)= \sigma^2\cdot\left(1-\rho\left(r\right)\right)+n]




	CovModel.covariance : The (auto-)covariance of the model given by


[image: C\left(r\right)= \sigma^2\cdot\rho\left(r\right)]




	CovModel.correlation : The (auto-)correlation
(or normalized covariance) of the model given by


[image: \rho\left(r\right)]




	CovModel.cor : The normalized correlation taking a
normalized range given by:


[image: \mathrm{cor}\left(\frac{r}{\ell}\right) = \rho\left(r\right)]






As you can see, it is the easiest way to define a covariance model by giving a
correlation function as demonstrated in the introductory example.
If one of the above functions is given, the others will be determined:

[image: 01 basic methods]
import gstools as gs

model = gs.Exponential(dim=3, var=2.0, len_scale=10, nugget=0.5)
ax = model.plot("variogram")
model.plot("covariance", ax=ax)
model.plot("correlation", ax=ax)





Total running time of the script: ( 0 minutes  0.113 seconds)



Download Python source code: 01_basic_methods.py




Download Jupyter notebook: 01_basic_methods.ipynb
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Anisotropy and Rotation

The internally used (semi-) variogram
represents the isotropic case for the model.
Nevertheless, you can provide anisotropy ratios by:

import gstools as gs

model = gs.Gaussian(dim=3, var=2.0, len_scale=10, anis=0.5)
print(model.anis)
print(model.len_scale_vec)





Out:

[1.  0.5]
[10. 10.  5.]





As you can see, we defined just one anisotropy-ratio
and the second transversal direction was filled up with 1..
You can get the length-scales in each direction by
the attribute CovModel.len_scale_vec. For full control you can set
a list of anistropy ratios: anis=[0.5, 0.4].

Alternatively you can provide a list of length-scales:

model = gs.Gaussian(dim=3, var=2.0, len_scale=[10, 5, 4])
model.plot("vario_spatial")
print("Anisotropy representations:")
print("Anis. ratios:", model.anis)
print("Main length scale", model.len_scale)
print("All length scales", model.len_scale_vec)





[image: Field 3D structured (50, 50, 50),   Plane]
Out:

Anisotropy representations:
Anis. ratios: [0.5 0.4]
Main length scale 10.0
All length scales [10.  5.  4.]






Rotation Angles

The main directions of the field don’t have to coincide with the spatial
directions [image: x], [image: y] and [image: z]. Therefore you can provide
rotation angles for the model:

model = gs.Gaussian(dim=3, var=2.0, len_scale=[10, 2], angles=2.5)
model.plot("vario_spatial")
print("Rotation angles", model.angles)





[image: Field 3D structured (50, 50, 50),   Plane]
Out:

Rotation angles [2.5 0.  0. ]





Again, the angles were filled up with 0. to match the dimension and you
could also provide a list of angles. The number of angles depends on the
given dimension:


	in 1D: no rotation performable


	in 2D: given as rotation around z-axis


	in 3D: given by yaw, pitch, and roll (known as
Tait–Bryan [https://en.wikipedia.org/wiki/Euler_angles#Tait-Bryan_angles]
angles)


	in nD: See the random field example about higher dimensions




Total running time of the script: ( 0 minutes  0.976 seconds)



Download Python source code: 02_aniso_rotation.py




Download Jupyter notebook: 02_aniso_rotation.ipynb
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Spectral methods

The spectrum of a covariance model is given by:


[image: S(\mathbf{k}) = \left(\frac{1}{2\pi}\right)^n \int C(\Vert\mathbf{r}\Vert) e^{i b\mathbf{k}\cdot\mathbf{r}} d^n\mathbf{r}]


Since the covariance function [image: C(r)] is radially symmetric, we can
calculate this by the
hankel-transformation [https://en.wikipedia.org/wiki/Hankel_transform]:


[image: S(k) = \left(\frac{1}{2\pi}\right)^n \cdot \frac{(2\pi)^{n/2}}{(bk)^{n/2-1}} \int_0^\infty r^{n/2-1} C(r) J_{n/2-1}(bkr) r dr]


Where [image: k=\left\Vert\mathbf{k}\right\Vert].

Depending on the spectrum, the spectral-density is defined by:


[image: \tilde{S}(k) = \frac{S(k)}{\sigma^2}]


You can access these methods by:

import gstools as gs

model = gs.Gaussian(dim=3, var=2.0, len_scale=10)
ax = model.plot("spectrum")
model.plot("spectral_density", ax=ax)





[image: 03 spectral methods]

Note

The spectral-density is given by the radius of the input phase. But it is
not a probability density function for the radius of the phase.
To obtain the pdf for the phase-radius, you can use the methods
CovModel.spectral_rad_pdf
or CovModel.ln_spectral_rad_pdf for the logarithm.

The user can also provide a cdf (cumulative distribution function) by
defining a method called spectral_rad_cdf
and/or a ppf (percent-point function)
by spectral_rad_ppf.

The attributes CovModel.has_cdf
and CovModel.has_ppf will check for that.



Total running time of the script: ( 0 minutes  0.108 seconds)



Download Python source code: 03_spectral_methods.py




Download Jupyter notebook: 03_spectral_methods.ipynb
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Different scales

Besides the length-scale, there are many other ways of characterizing a certain
scale of a covariance model. We provide two common scales with the covariance
model.


Integral scale

The integral scale [https://en.wikipedia.org/wiki/Integral_length_scale]
of a covariance model is calculated by:


[image: I = \int_0^\infty \rho(r) dr]


You can access it by:

import gstools as gs

model = gs.Stable(dim=3, var=2.0, len_scale=10)
print("Main integral scale:", model.integral_scale)
print("All integral scales:", model.integral_scale_vec)





Out:

Main integral scale: 9.027452929509336
All integral scales: [9.02745293 9.02745293 9.02745293]





You can also specify integral length scales like the ordinary length scale,
and len_scale/anis will be recalculated:

model = gs.Stable(dim=3, var=2.0, integral_scale=[10, 4, 2])
print("Anisotropy ratios:", model.anis)
print("Main length scale:", model.len_scale)
print("All length scales:", model.len_scale_vec)
print("Main integral scale:", model.integral_scale)
print("All integral scales:", model.integral_scale_vec)





Out:

Anisotropy ratios: [0.4 0.2]
Main length scale: 11.077321674324725
All length scales: [11.07732167  4.43092867  2.21546433]
Main integral scale: 10.0
All integral scales: [10.  4.  2.]








Percentile scale

Another scale characterizing the covariance model, is the percentile scale.
It is the distance, where the normalized
variogram reaches a certain percentage of its sill.

model = gs.Stable(dim=3, var=2.0, len_scale=10)
per_scale = model.percentile_scale(0.9)
int_scale = model.integral_scale
len_scale = model.len_scale
print("90% Percentile scale:", per_scale)
print("Integral scale:", int_scale)
print("Length scale:", len_scale)





Out:

90% Percentile scale: 17.437215135964117
Integral scale: 9.027452929509336
Length scale: 10.0






Note

The nugget is neglected by the percentile scale.






Comparison

ax = model.plot()
ax.axhline(1.8, color="k", label=r"90% percentile")
ax.axvline(per_scale, color="k", linestyle="--", label=r"90% percentile scale")
ax.axvline(int_scale, color="k", linestyle="-.", label=r"integral scale")
ax.axvline(len_scale, color="k", linestyle=":", label=r"length scale")
ax.legend()





[image: 04 different scales]
Total running time of the script: ( 0 minutes  0.180 seconds)



Download Python source code: 04_different_scales.py




Download Jupyter notebook: 04_different_scales.ipynb
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Additional Parameters

Let’s pimp our self-defined model Gau from the introductory example
by setting the exponent as an additional parameter:


[image: \rho(r) := \exp\left(-\left(\frac{r}{\ell}\right)^{\alpha}\right)]


This leads to the so called stable covariance model and we can define it by

import numpy as np
import gstools as gs


class Stab(gs.CovModel):
    def default_opt_arg(self):
        return {"alpha": 1.5}

    def cor(self, h):
        return np.exp(-(h ** self.alpha))





As you can see, we override the method CovModel.default_opt_arg
to provide a standard value for the optional argument alpha.
We can access it in the correlation function by self.alpha

Now we can instantiate this model by either setting alpha implicitly with
the default value or explicitly:

model1 = Stab(dim=2, var=2.0, len_scale=10)
model2 = Stab(dim=2, var=2.0, len_scale=10, alpha=0.5)
ax = model1.plot()
model2.plot(ax=ax)





[image: 05 additional para]
Apparently, the parameter alpha controls the slope of the variogram
and consequently the roughness of a generated random field.


Note

You don’t have to override the CovModel.default_opt_arg,
but you will get a ValueError if you don’t set it on creation.



Total running time of the script: ( 0 minutes  0.120 seconds)



Download Python source code: 05_additional_para.py




Download Jupyter notebook: 05_additional_para.ipynb
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Fitting variogram data

The model class comes with a routine to fit the model-parameters to given
variogram data. In the following we will use the self defined stable model
from a previous example.

import numpy as np
import gstools as gs


class Stab(gs.CovModel):
    def default_opt_arg(self):
        return {"alpha": 1.5}

    def cor(self, h):
        return np.exp(-(h ** self.alpha))


# Exemplary variogram data (e.g. estimated from field observations)
bins = [1.0, 3.0, 5.0, 7.0, 9.0, 11.0]
est_vario = [0.2, 0.5, 0.6, 0.8, 0.8, 0.9]
# fitting model
model = Stab(dim=2)
# we have to provide boundaries for the parameters
model.set_arg_bounds(alpha=[0, 3])
results, pcov = model.fit_variogram(bins, est_vario, nugget=False)
print("Results:", results)





Out:

Results: {'var': 1.0245739533522298, 'len_scale': 5.081591843438552, 'nugget': 0.0, 'alpha': 0.9067041165465699}





ax = model.plot()
ax.scatter(bins, est_vario, color="k", label="sample variogram")
ax.legend()





[image: 06 fitting para ranges]
As you can see, we have to provide boundaries for the parameters.
As a default, the following bounds are set:


	additional parameters: [-np.inf, np.inf]


	variance: [0.0, np.inf]


	len_scale: [0.0, np.inf]


	nugget: [0.0, np.inf]




Also, you can deselect parameters from fitting, so their predefined values
will be kept. In our case, we fixed a nugget of 0.0, which was set
by default. You can deselect any standard or
optional argument of the covariance model.
The second return value pcov is the estimated covariance of popt from
the used scipy routine scipy.optimize.curve_fit [https://docs.scipy.org/doc/scipy/reference/reference/generated/scipy.optimize.curve_fit.html#scipy.optimize.curve_fit].

You can use the following methods to manipulate the used bounds:







	CovModel.default_opt_arg_bounds()

	Provide default boundaries for optional arguments.



	CovModel.default_arg_bounds()

	Provide default boundaries for arguments.



	CovModel.set_arg_bounds([check_args])

	Set bounds for the parameters of the model.



	CovModel.check_arg_bounds()

	Check arguments to be within their given bounds.






You can override the CovModel.default_opt_arg_bounds
to provide standard bounds for your additional parameters.

To access the bounds you can use:







	CovModel.var_bounds

	Bounds for the variance.



	CovModel.len_scale_bounds

	Bounds for the lenght scale.



	CovModel.nugget_bounds

	Bounds for the nugget.



	CovModel.opt_arg_bounds

	Bounds for the optional arguments.



	CovModel.arg_bounds

	Bounds for all parameters.






Total running time of the script: ( 0 minutes  0.138 seconds)



Download Python source code: 06_fitting_para_ranges.py




Download Jupyter notebook: 06_fitting_para_ranges.ipynb
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Variogram Estimation

Estimating the spatial correlations is an important part of geostatistics.
These spatial correlations can be expressed by the variogram, which can be
estimated with the subpackage gstools.variogram. The variograms can be
estimated on structured and unstructured grids.

The same (semi-)variogram [https://en.wikipedia.org/wiki/Variogram#Semivariogram] as
The Covariance Model is being used
by this subpackage.


Examples


[image: Fit Variogram]
Fit Variogram








[image: Finding the best fitting variogram model]
Finding the best fitting variogram model








[image: Multi-field variogram estimation]
Multi-field variogram estimation








[image: Directional variogram estimation and fitting in 2D]
Directional variogram estimation and fitting in 2D








[image: Directional variogram estimation and fitting in 3D]
Directional variogram estimation and fitting in 3D








[image: Fit Variogram with automatic binning]
Fit Variogram with automatic binning








[image: Automatic binning with lat-lon data]
Automatic binning with lat-lon data
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Fit Variogram

import numpy as np
import gstools as gs





Generate a synthetic field with an exponential model.

x = np.random.RandomState(19970221).rand(1000) * 100.0
y = np.random.RandomState(20011012).rand(1000) * 100.0
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))





Estimate the variogram of the field with 40 bins.

bins = np.arange(40)
bin_center, gamma = gs.vario_estimate((x, y), field, bins)





Fit the variogram with a stable model (no nugget fitted).

fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)





Plot the fitting result.

ax = fit_model.plot(x_max=40)
ax.scatter(bin_center, gamma)
print(fit_model)





[image: 00 fit variogram]
Out:

Stable(dim=2, var=1.92, len_scale=8.15, nugget=0.0, alpha=1.05)





Total running time of the script: ( 0 minutes  0.498 seconds)



Download Python source code: 00_fit_variogram.py




Download Jupyter notebook: 00_fit_variogram.ipynb
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Click here
to download the full example code




Finding the best fitting variogram model

import numpy as np
import gstools as gs
from matplotlib import pyplot as plt





Generate a synthetic field with an exponential model.

x = np.random.RandomState(19970221).rand(1000) * 100.0
y = np.random.RandomState(20011012).rand(1000) * 100.0
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))





Estimate the variogram of the field with 40 bins and plot the result.

bins = np.arange(40)
bin_center, gamma = gs.vario_estimate((x, y), field, bins)





Define a set of models to test.

models = {
    "Gaussian": gs.Gaussian,
    "Exponential": gs.Exponential,
    "Matern": gs.Matern,
    "Stable": gs.Stable,
    "Rational": gs.Rational,
    "Circular": gs.Circular,
    "Spherical": gs.Spherical,
    "SuperSpherical": gs.SuperSpherical,
    "JBessel": gs.JBessel,
}
scores = {}





Iterate over all models, fit their variogram and calculate the r2 score.

# plot the estimated variogram
plt.scatter(bin_center, gamma, color="k", label="data")
ax = plt.gca()

# fit all models to the estimated variogram
for model in models:
    fit_model = models[model](dim=2)
    para, pcov, r2 = fit_model.fit_variogram(bin_center, gamma, return_r2=True)
    fit_model.plot(x_max=40, ax=ax)
    scores[model] = r2





[image: 01 find best model]
Create a ranking based on the score and determine the best models

ranking = [
    (k, v)
    for k, v in sorted(scores.items(), key=lambda item: item[1], reverse=True)
]
print("RANKING")
for i, (model, score) in enumerate(ranking, 1):
    print(i, model, score)

plt.show()





Out:

RANKING
1 Stable 0.9821836193000343
2 Matern 0.9817602690672453
3 SuperSpherical 0.9814051618626767
4 Exponential 0.980407470735337
5 Rational 0.9771067080321653
6 Spherical 0.9733371670897375
7 Circular 0.9672526098783125
8 Gaussian 0.9592818084007272
9 JBessel 0.9583119496108051





Total running time of the script: ( 0 minutes  1.017 seconds)



Download Python source code: 01_find_best_model.py




Download Jupyter notebook: 01_find_best_model.ipynb
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to download the full example code




Multi-field variogram estimation

In this example, we demonstrate how to estimate a variogram from multiple
fields on the same point-set that should have the same statistical properties.

import numpy as np
import gstools as gs
import matplotlib.pyplot as plt


x = np.random.RandomState(19970221).rand(1000) * 100.0
y = np.random.RandomState(20011012).rand(1000) * 100.0
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0)





Generate two synthetic fields with an exponential model.

field1 = srf((x, y), seed=19970221)
field2 = srf((x, y), seed=20011012)
fields = [field1, field2]





Now we estimate the variograms for both fields individually and then again
simultaneously with only one call.

bins = np.arange(40)
bin_center, gamma1 = gs.vario_estimate((x, y), field1, bins)
bin_center, gamma2 = gs.vario_estimate((x, y), field2, bins)
bin_center, gamma = gs.vario_estimate((x, y), fields, bins)





Now we demonstrate that the mean variogram from both fields coincides
with the joined estimated one.

plt.plot(bin_center, gamma1, label="field 1")
plt.plot(bin_center, gamma2, label="field 2")
plt.plot(bin_center, gamma, label="joined fields")
plt.plot(bin_center, 0.5 * (gamma1 + gamma2), ":", label="field 1+2 mean")
plt.legend()
plt.show()





[image: 02 multi vario]
Total running time of the script: ( 0 minutes  1.117 seconds)



Download Python source code: 02_multi_vario.py




Download Jupyter notebook: 02_multi_vario.ipynb
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Directional variogram estimation and fitting in 2D

In this example, we demonstrate how to estimate a directional variogram by
setting the direction angles in 2D.

Afterwards we will fit a model to this estimated variogram and show the result.

import numpy as np
import gstools as gs
from matplotlib import pyplot as plt





Generating synthetic field with anisotropy and a rotation of 22.5 degree.

angle = np.pi / 8
model = gs.Exponential(dim=2, len_scale=[10, 5], angles=angle)
x = y = range(101)
srf = gs.SRF(model, seed=123456)
field = srf((x, y), mesh_type="structured")





Now we are going to estimate a directional variogram with an angular
tolerance of 11.25 degree and a bandwith of 8.

bins = range(0, 40, 2)
bin_center, dir_vario, counts = gs.vario_estimate(
    *((x, y), field, bins),
    direction=gs.rotated_main_axes(dim=2, angles=angle),
    angles_tol=np.pi / 16,
    bandwidth=8,
    mesh_type="structured",
    return_counts=True,
)





Afterwards we can use the estimated variogram to fit a model to it:

print("Original:")
print(model)
model.fit_variogram(bin_center, dir_vario)
print("Fitted:")
print(model)





Out:

Original:
Exponential(dim=2, var=1.0, len_scale=10.0, nugget=0.0, anis=[0.5], angles=[0.393])
Fitted:
Exponential(dim=2, var=0.942, len_scale=9.14, nugget=1.1e-17, anis=[0.529], angles=[0.393])





Plotting.

fig, (ax1, ax2) = plt.subplots(1, 2, figsize=[10, 5])

ax1.scatter(bin_center, dir_vario[0], label="emp. vario: pi/8")
ax1.scatter(bin_center, dir_vario[1], label="emp. vario: pi*5/8")
ax1.legend(loc="lower right")

model.plot("vario_axis", axis=0, ax=ax1, x_max=40, label="fit on axis 0")
model.plot("vario_axis", axis=1, ax=ax1, x_max=40, label="fit on axis 1")
ax1.set_title("Fitting an anisotropic model")

srf.plot(ax=ax2)
plt.show()





[image: Fitting an anisotropic model, Field 2D structured: (101, 101)]
Without fitting a model, we see that the correlation length in the main
direction is greater than the transversal one.

Total running time of the script: ( 0 minutes  8.023 seconds)



Download Python source code: 03_directional_2d.py




Download Jupyter notebook: 03_directional_2d.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here
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Directional variogram estimation and fitting in 3D

In this example, we demonstrate how to estimate a directional variogram by
setting the estimation directions in 3D.

Afterwards we will fit a model to this estimated variogram and show the result.

import numpy as np
import gstools as gs
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D





Generating synthetic field with anisotropy and rotation by Tait-Bryan angles.

dim = 3
# rotation around z, y, x
angles = [np.deg2rad(90), np.deg2rad(45), np.deg2rad(22.5)]
model = gs.Gaussian(dim=3, len_scale=[16, 8, 4], angles=angles)
x = y = z = range(50)
pos = (x, y, z)
srf = gs.SRF(model, seed=1001)
field = srf.structured(pos)





Here we generate the axes of the rotated coordinate system
to get an impression what the rotation angles do.

# All 3 axes of the rotated coordinate-system
main_axes = gs.rotated_main_axes(dim, angles)
axis1, axis2, axis3 = main_axes





Now we estimate the variogram along the main axes. When the main axes are
unknown, one would need to sample multiple directions and look for the one
with the longest correlation length (flattest gradient).
Then check the transversal directions and so on.

bin_center, dir_vario, counts = gs.vario_estimate(
    pos,
    field,
    direction=main_axes,
    bandwidth=10,
    sampling_size=2000,
    sampling_seed=1001,
    mesh_type="structured",
    return_counts=True,
)





Afterwards we can use the estimated variogram to fit a model to it.
Note, that the rotation angles need to be set beforehand.

print("Original:")
print(model)
model.fit_variogram(bin_center, dir_vario)
print("Fitted:")
print(model)





Out:

Original:
Gaussian(dim=3, var=1.0, len_scale=16.0, nugget=0.0, anis=[0.5, 0.25], angles=[1.57, 0.785, 0.393])
Fitted:
Gaussian(dim=3, var=0.972, len_scale=13.0, nugget=0.0138, anis=[0.542, 0.281], angles=[1.57, 0.785, 0.393])





Plotting main axes and the fitted directional variogram.

fig = plt.figure(figsize=[10, 5])
ax1 = fig.add_subplot(121, projection=Axes3D.name)
ax2 = fig.add_subplot(122)

ax1.plot([0, axis1[0]], [0, axis1[1]], [0, axis1[2]], label="0.")
ax1.plot([0, axis2[0]], [0, axis2[1]], [0, axis2[2]], label="1.")
ax1.plot([0, axis3[0]], [0, axis3[1]], [0, axis3[2]], label="2.")
ax1.set_xlim(-1, 1)
ax1.set_ylim(-1, 1)
ax1.set_zlim(-1, 1)
ax1.set_xlabel("X")
ax1.set_ylabel("Y")
ax1.set_zlabel("Z")
ax1.set_title("Tait-Bryan main axis")
ax1.legend(loc="lower left")

x_max = max(bin_center)
ax2.scatter(bin_center, dir_vario[0], label="0. axis")
ax2.scatter(bin_center, dir_vario[1], label="1. axis")
ax2.scatter(bin_center, dir_vario[2], label="2. axis")
model.plot("vario_axis", axis=0, ax=ax2, x_max=x_max, label="fit on axis 0")
model.plot("vario_axis", axis=1, ax=ax2, x_max=x_max, label="fit on axis 1")
model.plot("vario_axis", axis=2, ax=ax2, x_max=x_max, label="fit on axis 2")
ax2.set_title("Fitting an anisotropic model")
ax2.legend()

plt.show()





[image: Tait-Bryan main axis, Fitting an anisotropic model]
Also, let’s have a look at the field.

srf.plot()





[image: Field 3D structured (50, 50, 50),   Plane]
Total running time of the script: ( 0 minutes  8.661 seconds)



Download Python source code: 04_directional_3d.py




Download Jupyter notebook: 04_directional_3d.ipynb
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Fit Variogram with automatic binning

import numpy as np
import gstools as gs





Generate a synthetic field with an exponential model.

x = np.random.RandomState(19970221).rand(1000) * 100.0
y = np.random.RandomState(20011012).rand(1000) * 100.0
model = gs.Exponential(dim=2, var=2, len_scale=8)
srf = gs.SRF(model, mean=0, seed=19970221)
field = srf((x, y))
print(field.var())





Out:

1.6791948750716688





Estimate the variogram of the field with automatic binning.

bin_center, gamma = gs.vario_estimate((x, y), field)
print("estimated bin number:", len(bin_center))
print("maximal bin distance:", max(bin_center))





Out:

estimated bin number: 21
maximal bin distance: 45.88516574202333





Fit the variogram with a stable model (no nugget fitted).

fit_model = gs.Stable(dim=2)
fit_model.fit_variogram(bin_center, gamma, nugget=False)
print(fit_model)





Out:

Stable(dim=2, var=1.85, len_scale=7.42, nugget=0.0, alpha=1.09)





Plot the fitting result.

ax = fit_model.plot(x_max=max(bin_center))
ax.scatter(bin_center, gamma)





[image: 05 auto fit variogram]
Total running time of the script: ( 0 minutes  0.369 seconds)



Download Python source code: 05_auto_fit_variogram.py




Download Jupyter notebook: 05_auto_fit_variogram.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here
to download the full example code




Automatic binning with lat-lon data

In this example we demonstrate automatic binning for a tiny data set
containing temperature records from Germany
(See the detailed DWD example for more information on the data).

We use a data set from 20 meteo-stations choosen randomly.

import numpy as np
import gstools as gs

# lat, lon, temperature
data = np.array(
    [
        [52.9336, 8.237, 15.7],
        [48.6159, 13.0506, 13.9],
        [52.4853, 7.9126, 15.1],
        [50.7446, 9.345, 17.0],
        [52.9437, 12.8518, 21.9],
        [53.8633, 8.1275, 11.9],
        [47.8342, 10.8667, 11.4],
        [51.0881, 12.9326, 17.2],
        [48.406, 11.3117, 12.9],
        [49.7273, 8.1164, 17.2],
        [49.4691, 11.8546, 13.4],
        [48.0197, 12.2925, 13.9],
        [50.4237, 7.4202, 18.1],
        [53.0316, 13.9908, 21.3],
        [53.8412, 13.6846, 21.3],
        [54.6792, 13.4343, 17.4],
        [49.9694, 9.9114, 18.6],
        [51.3745, 11.292, 20.2],
        [47.8774, 11.3643, 12.7],
        [50.5908, 12.7139, 15.8],
    ]
)
pos = data.T[:2]  # lat, lon
field = data.T[2]  # temperature





Since the overall range of these meteo-stations is too low, we can use the
data-variance as additional information during the fit of the variogram.

emp_v = gs.vario_estimate(pos, field, latlon=True)
sph = gs.Spherical(latlon=True, rescale=gs.EARTH_RADIUS)
sph.fit_variogram(*emp_v, sill=np.var(field))
ax = sph.plot(x_max=2 * np.max(emp_v[0]))
ax.scatter(*emp_v, label="Empirical variogram")
ax.legend()
print(sph)





[image: 06 auto bin latlon]
Out:

Spherical(latlon=True, var=9.91, len_scale=4.7e+02, nugget=1.78e-15, rescale=6.37e+03)





As we can see, the variogram fitting was successful and providing the data
variance helped finding the right length-scale.

Now, we’ll use this covariance model to interpolate the given data with
ordinary kriging.

# enclosing box for data points
grid_lat = np.linspace(np.min(pos[0]), np.max(pos[0]))
grid_lon = np.linspace(np.min(pos[1]), np.max(pos[1]))
# ordinary kriging
krige = gs.krige.Ordinary(sph, pos, field)
krige((grid_lat, grid_lon), mesh_type="structured")
ax = krige.plot()
# plotting lat on y-axis and lon on x-axis
ax.scatter(pos[1], pos[0], 50, c=field, edgecolors="k", label="input")
ax.legend()





[image: Field 2D structured: (50, 50)]
Looks good, doesn’t it?

This workflow is also implemented in the Krige class, by setting
fit_variogram=True. Then the whole procedure shortens:

krige = gs.krige.Ordinary(sph, pos, field, fit_variogram=True)
krige.structured((grid_lat, grid_lon))

# plot the result
krige.plot()
# show the fitting results
print(krige.model)





[image: Field 2D structured: (50, 50)]
Out:

Spherical(latlon=True, var=9.91, len_scale=4.7e+02, nugget=1.78e-15, rescale=6.37e+03)





This example shows, that setting up variogram estimation and kriging routines
is straight forward with GSTools!

Total running time of the script: ( 0 minutes  0.598 seconds)



Download Python source code: 06_auto_bin_latlon.py




Download Jupyter notebook: 06_auto_bin_latlon.ipynb
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Random Vector Field Generation

In 1970, Kraichnan was the first to suggest a randomization method.
For studying the diffusion of single particles in a random incompressible
velocity field, he came up with a randomization method which includes a
projector which ensures the incompressibility of the vector field.

Without loss of generality we assume that the mean velocity [image: \bar{U}] is oriented
towards the direction of the first basis vector [image: \mathbf{e}_1]. Our goal is now to
generate random fluctuations with a given covariance model around this mean velocity.
And at the same time, making sure that the velocity field remains incompressible or
in other words, ensure [image: \nabla \cdot \mathbf U = 0].
This can be done by using the randomization method we already know, but adding a
projector to every mode being summed:


[image: \mathbf{U}(\mathbf{x}) = \bar{U} \mathbf{e}_1 - \sqrt{\frac{\sigma^{2}}{N}} \sum_{i=1}^{N} \mathbf{p}(\mathbf{k}_i) \left[ Z_{1,i}    \cos\left( \langle \mathbf{k}_{i}, \mathbf{x} \rangle \right) + \sin\left( \langle \mathbf{k}_{i}, \mathbf{x} \rangle \right) \right]]


with the projector


[image: \mathbf{p}(\mathbf{k}_i) = \mathbf{e}_1 - \frac{\mathbf{k}_i k_1}{k^2} \; .]


By calculating [image: \nabla \cdot \mathbf U = 0], it can be verified, that
the resulting field is indeed incompressible.


Examples


[image: Generating a Random 2D Vector Field]
Generating a Random 2D Vector Field








[image: Generating a Random 3D Vector Field]
Generating a Random 3D Vector Field
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Generating a Random 2D Vector Field

As a first example we are going to generate a 2d vector field with a Gaussian
covariance model on a structured grid:

import numpy as np
import gstools as gs

# the grid
x = np.arange(100)
y = np.arange(100)

# a smooth Gaussian covariance model
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, generator="VectorField", seed=19841203)
srf((x, y), mesh_type="structured")
srf.plot()





[image: Field 2D structured: (2, 100, 100)]
Let us have a look at the influence of the covariance model. Choosing the
exponential model and keeping all other parameters the same

# a rougher exponential covariance model
model2 = gs.Exponential(dim=2, var=1, len_scale=10)
srf.model = model2
srf((x, y), mesh_type="structured", seed=19841203)
srf.plot()





[image: Field 2D structured: (2, 100, 100)]
and we see, that the wiggles are much “rougher” than the smooth Gaussian ones.


Applications

One great advantage of the Kraichnan method is, that after some initializations,
one can compute the velocity field at arbitrary points, online, with hardly any
overhead.
This means, that for a Lagrangian transport simulation for example, the velocity
can be evaluated at each particle position very efficiently and without any
interpolation. These field interpolations are a common problem for Lagrangian
methods.

Total running time of the script: ( 0 minutes  2.891 seconds)



Download Python source code: 00_2d_vector_field.py




Download Jupyter notebook: 00_2d_vector_field.ipynb
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Generating a Random 3D Vector Field

In this example we are going to generate a random 3D vector field with a
Gaussian covariance model. The mesh on which we generate the field will be
externally defined and it will be generated by PyVista.

import gstools as gs
import pyvista as pv

# mainly for setting a white background
pv.set_plot_theme("document")





create a uniform grid with PyVista

dim, spacing, origin = (40, 30, 10), (1, 1, 1), (-10, 0, 0)
mesh = pv.UniformGrid(dim, spacing, origin)





create an incompressible random 3d velocity field on the given mesh
with added mean velocity in x-direction

model = gs.Gaussian(dim=3, var=3, len_scale=1.5)
srf = gs.SRF(model, mean=(0.5, 0, 0), generator="VectorField", seed=198412031)
srf.mesh(mesh, points="points", name="Velocity")





Now, we can do the plotting

streamlines = mesh.streamlines(
    "Velocity",
    terminal_speed=0.0,
    n_points=800,
    source_radius=2.5,
)

# set a fancy camera position
cpos = [(25, 23, 17), (0, 10, 0), (0, 0, 1)]

p = pv.Plotter()
# adding an outline might help navigating in 3D space
# p.add_mesh(mesh.outline(), color="k")
p.add_mesh(
    streamlines.tube(radius=0.005),
    show_scalar_bar=False,
    diffuse=0.5,
    ambient=0.5,
)





Out:

/home/docs/checkouts/readthedocs.org/user_builds/gstools/envs/v1.3.2/lib/python3.7/site-packages/pyvista/plotting/plotting.py:96: UserWarning:
This system does not appear to be running an xserver.
PyVista will likely segfault when rendering.

Try starting a virtual frame buffer with xvfb, or using
  ``pyvista.start_xvfb()``

  warnings.warn('\n'






Note

PyVista is not working on readthedocs, but you can try it out yourself by
uncommenting the following line of code.



# p.show(cpos=cpos)





The result should look like this:

[image: ../../_images/GS_3d_vector_field.png]
Total running time of the script: ( 0 minutes  4.881 seconds)



Download Python source code: 01_3d_vector_field.py




Download Jupyter notebook: 01_3d_vector_field.ipynb
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Kriging

The subpackage gstools.krige provides routines for Gaussian process regression,
also known as kriging.
Kriging is a method of data interpolation based on predefined covariance models.

The aim of kriging is to derive the value of a field at some point [image: x_0],
when there are fixed observed values [image: z(x_1)\ldots z(x_n)] at given points [image: x_i].

The resluting value [image: z_0] at [image: x_0] is calculated as a weighted mean:


[image: z_0 = \sum_{i=1}^n w_i \cdot z_i]


The weights [image: W = (w_1,\ldots,w_n)] depent on the given covariance model and the location of the target point.

The different kriging approaches provide different ways of calculating [image: W].

The Krige class provides everything in one place and you can switch on/off
the features you want:


	unbiased: the weights have to sum up to 1. If true, this results in
Ordinary kriging, where the mean is estimated, otherwise it will result in
Simple kriging, where the mean has to be given.


	drift_functions: you can give a polynomial order or a list of self defined
functions representing the internal drift of the given values. This drift will
be fitted internally during the kriging interpolation. This results in Universal kriging.


	ext_drift: You can also give an external drift per point to the routine.
In contrast to the internal drift, that is evaluated at the desired points with
the given functions, the external drift has to given for each point form an “external”
source. This results in ExtDrift kriging.


	trend, mean, normalizer: These are used to pre- and post-process data.
If you already have fitted a trend model that is provided as a callable function,
you can give it to the kriging routine. Normalizer are power-transformations
to gain normality.
mean behaves similar to trend but is applied at another position:



	conditioning data is de-trended (substracting trend)


	detrended conditioning data is then normalized (in order to follow a normal distribution)


	normalized conditioning data is set to zero mean (subtracting mean)







Cosequently, when there is no normalizer given, trend and mean are the same thing
and only one should be used.
Detrended kriging is a shortcut to provide only a trend and simple kriging
with normal data.



	exact and cond_err: To incorporate the nugget effect and/or measurement errors,
one can set exact to False and provide either individual measurement errors
for each point or set the nugget as a constant measurement error everywhere.


	pseudo_inv: Sometimes the inversion of the kriging matrix can be numerically unstable.
This occurs for examples in cases of redundant input values. In this case we provide a switch to
use the pseudo-inverse of the matrix. Then redundant conditional values will automatically
be averaged.





Note

All mentioned features can be combined within the Krige class.
All other kriging classes are just shortcuts to this class with a limited list
of input parameters.



The routines for kriging are almost identical to the routines for spatial random fields,
with regard to their handling.
First you define a covariance model, as described in The Covariance Model,
then you initialize the kriging class with this model:

import gstools as gs
# condtions
cond_pos = [...]
cond_val = [...]
model = gs.Gaussian(dim=1, var=0.5, len_scale=2)
krig = gs.krige.Simple(model, cond_pos=cond_pos, cond_val=cond_val, mean=1)





The resulting field instance krig has the same methods as the
SRF class.
You can call it to evaluate the kriged field at different points,
you can plot the latest field or you can export the field and so on.


Provided Kriging Methods

The following kriging methods are provided within the
submodule gstools.krige.







	Krige(model, cond_pos, cond_val[, …])

	A Swiss Army knife for kriging.



	Simple(model, cond_pos, cond_val[, mean, …])

	Simple kriging.



	Ordinary(model, cond_pos, cond_val[, …])

	Ordinary kriging.



	Universal(model, cond_pos, cond_val, …[, …])

	Universal kriging.



	ExtDrift(model, cond_pos, cond_val, ext_drift)

	External drift kriging (EDK).



	Detrended(model, cond_pos, cond_val, trend)

	Detrended simple kriging.









Examples
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Simple Kriging

Simple kriging assumes a known mean of the data.
For simplicity we assume a mean of 0,
which can be achieved by subtracting the mean from the observed values and
subsequently adding it to the resulting data.

The resulting equation system for [image: W] is given by:


[image: W = \begin{pmatrix}c(x_1,x_1) & \cdots & c(x_1,x_n) \\ \vdots & \ddots & \vdots  \\ c(x_n,x_1) & \cdots & c(x_n,x_n) \end{pmatrix}^{-1} \begin{pmatrix}c(x_1,x_0) \\ \vdots \\ c(x_n,x_0) \end{pmatrix}]


Thereby [image: c(x_i,x_j)] is the covariance of the given observations.


Example

Here we use simple kriging in 1D (for plotting reasons) with 5 given observations/conditions.
The mean of the field has to be given beforehand.

import numpy as np
from gstools import Gaussian, krige

# condtions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
# spatial random field class
model = Gaussian(dim=1, var=0.5, len_scale=2)





krig = krige.Simple(model, mean=1, cond_pos=cond_pos, cond_val=cond_val)
krig(gridx)





ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.legend()





[image: Field 1D: (151,)]
Total running time of the script: ( 0 minutes  0.121 seconds)



Download Python source code: 00_simple_kriging.py




Download Jupyter notebook: 00_simple_kriging.ipynb
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Ordinary Kriging

Ordinary kriging will estimate an appropriate mean of the field,
based on the given observations/conditions and the covariance model used.

The resulting system of equations for [image: W] is given by:


[image: \begin{pmatrix}W\\\mu\end{pmatrix} = \begin{pmatrix} c(x_1,x_1) & \cdots & c(x_1,x_n) &1 \\ \vdots & \ddots & \vdots  & \vdots \\ c(x_n,x_1) & \cdots & c(x_n,x_n) & 1 \\ 1 &\cdots& 1 & 0 \end{pmatrix}^{-1} \begin{pmatrix}c(x_1,x_0) \\ \vdots \\ c(x_n,x_0) \\ 1\end{pmatrix}]


Thereby [image: c(x_i,x_j)] is the covariance of the given observations
and [image: \mu] is a Lagrange multiplier to minimize the kriging error and estimate the mean.


Example

Here we use ordinary kriging in 1D (for plotting reasons) with 5 given observations/conditions.
The estimated mean can be accessed by krig.mean.

import numpy as np
from gstools import Gaussian, krige

# condtions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
# spatial random field class
model = Gaussian(dim=1, var=0.5, len_scale=2)





krig = krige.Ordinary(model, cond_pos=cond_pos, cond_val=cond_val)
krig(gridx)





ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.legend()





[image: Field 1D: (151,)]
Total running time of the script: ( 0 minutes  0.118 seconds)



Download Python source code: 01_ordinary_kriging.py




Download Jupyter notebook: 01_ordinary_kriging.ipynb
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Interface to PyKrige

To use fancier methods like
regression kriging [https://en.wikipedia.org/wiki/Regression-kriging],
we provide an interface to
PyKrige [https://github.com/GeoStat-Framework/PyKrige] (>v1.5), which means
you can pass a GSTools covariance model to the kriging routines of PyKrige.

To demonstrate the general workflow, we compare ordinary kriging of PyKrige
with the corresponding GSTools routine in 2D:

import numpy as np
import gstools as gs
from pykrige.ok import OrdinaryKriging
from matplotlib import pyplot as plt

# conditioning data
cond_x = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_y = [1.2, 0.6, 3.2, 4.4, 3.8]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

# grid definition for output field
gridx = np.arange(0.0, 5.5, 0.1)
gridy = np.arange(0.0, 6.5, 0.1)





A GSTools based Gaussian covariance model:

model = gs.Gaussian(
    dim=2, len_scale=1, anis=0.2, angles=-0.5, var=0.5, nugget=0.1
)






Ordinary Kriging with PyKrige

One can pass the defined GSTools model as
variogram model, which will not be fitted to the given data.
By providing the GSTools model, rotation and anisotropy are also
automatically defined:

OK1 = OrdinaryKriging(cond_x, cond_y, cond_val, variogram_model=model)
z1, ss1 = OK1.execute("grid", gridx, gridy)
plt.imshow(z1, origin="lower")
plt.show()





[image: 02 pykrige interface]



Ordinary Kriging with GSTools

The Ordinary kriging class is provided by GSTools as a shortcut to
define ordinary kriging with the general Krige class.

PyKrige’s routines are using exact kriging by default (when given a nugget).
To reproduce this behavior in GSTools, we have to set exact=True.

OK2 = gs.krige.Ordinary(model, [cond_x, cond_y], cond_val, exact=True)
OK2.structured([gridx, gridy])
ax = OK2.plot()
ax.set_aspect("equal")





[image: Field 2D structured: (55, 65)]
Total running time of the script: ( 0 minutes  0.336 seconds)



Download Python source code: 02_pykrige_interface.py




Download Jupyter notebook: 02_pykrige_interface.ipynb
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Compare Kriging

import numpy as np
from gstools import Gaussian, krige
import matplotlib.pyplot as plt

# condtions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)





A gaussian variogram model.

model = Gaussian(dim=1, var=0.5, len_scale=2)





Two kriged fields. One with simple and one with ordinary kriging.

kr1 = krige.Simple(model=model, mean=1, cond_pos=cond_pos, cond_val=cond_val)
kr2 = krige.Ordinary(model=model, cond_pos=cond_pos, cond_val=cond_val)
kr1(gridx)
kr2(gridx)





plt.plot(gridx, kr1.field, label="simple kriged field")
plt.plot(gridx, kr2.field, label="ordinary kriged field")
plt.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
plt.legend()
plt.show()





[image: 03 compare kriging]
Total running time of the script: ( 0 minutes  0.124 seconds)



Download Python source code: 03_compare_kriging.py




Download Jupyter notebook: 03_compare_kriging.ipynb
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External Drift Kriging

[image: Field 1D: (151,)]
import numpy as np
from gstools import SRF, Gaussian, krige

# synthetic condtions with a drift
drift_model = Gaussian(dim=1, len_scale=4)
drift = SRF(drift_model, seed=1010)
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
ext_drift = drift(cond_pos)
cond_val = ext_drift * 2 + 1
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
grid_drift = drift(gridx)
# kriging
model = Gaussian(dim=1, var=2, len_scale=4)
krig = krige.ExtDrift(model, cond_pos, cond_val, ext_drift)
krig(gridx, ext_drift=grid_drift)
ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.plot(gridx, grid_drift, label="drift")
ax.legend()





Total running time of the script: ( 0 minutes  0.130 seconds)



Download Python source code: 04_extdrift_kriging.py




Download Jupyter notebook: 04_extdrift_kriging.ipynb
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Universal Kriging

You can give a polynomial order or a list of self defined
functions representing the internal drift of the given values.
This drift will be fitted internally during the kriging interpolation.

In the following we are creating artificial data, where a linear drift
was added. The resulting samples are then used as input for Universal kriging.

The “linear” drift is then estimated during the interpolation.
To access only the estimated mean/drift, we provide a switch only_mean
in the call routine.

[image: Field 1D: (151,)]
import numpy as np
from gstools import SRF, Gaussian, krige

# synthetic condtions with a drift
drift_model = Gaussian(dim=1, var=0.1, len_scale=2)
drift = SRF(drift_model, seed=101)
cond_pos = np.linspace(0.1, 8, 10)
cond_val = drift(cond_pos) + cond_pos * 0.1 + 1
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
drift_field = drift(gridx) + gridx * 0.1 + 1
# kriging
model = Gaussian(dim=1, var=0.1, len_scale=2)
krig = krige.Universal(model, cond_pos, cond_val, "linear")
krig(gridx)
ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.plot(gridx, gridx * 0.1 + 1, ":", label="linear drift")
ax.plot(gridx, drift_field, "--", label="original field")

mean = krig(gridx, only_mean=True)
ax.plot(gridx, mean, label="estimated drift")

ax.legend()





Total running time of the script: ( 0 minutes  0.151 seconds)



Download Python source code: 05_universal_kriging.py




Download Jupyter notebook: 05_universal_kriging.ipynb
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Detrended Kriging

[image: Field 1D: (151,)]
import numpy as np
from gstools import SRF, Gaussian, krige


def trend(x):
    """Example for a simple linear trend."""
    return x * 0.1 + 1


# synthetic condtions with trend/drift
drift_model = Gaussian(dim=1, var=0.1, len_scale=2)
drift = SRF(drift_model, seed=101)
cond_pos = np.linspace(0.1, 8, 10)
cond_val = drift(cond_pos) + trend(cond_pos)
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
drift_field = drift(gridx) + trend(gridx)
# kriging
model = Gaussian(dim=1, var=0.1, len_scale=2)
krig_trend = krige.Detrended(model, cond_pos, cond_val, trend)
krig_trend(gridx)
ax = krig_trend.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.plot(gridx, trend(gridx), ":", label="linear trend")
ax.plot(gridx, drift_field, "--", label="original field")
ax.legend()





Total running time of the script: ( 0 minutes  0.145 seconds)



Download Python source code: 06_detrended_kriging.py




Download Jupyter notebook: 06_detrended_kriging.ipynb
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Detrended Ordinary Kriging

[image: Field 1D: (151,)]
import numpy as np
from gstools import SRF, Gaussian, krige


def trend(x):
    """Example for a simple linear trend."""
    return x * 0.1 + 1


# synthetic condtions with trend/drift
drift_model = Gaussian(dim=1, var=0.1, len_scale=2)
drift = SRF(drift_model, seed=101)
cond_pos = np.linspace(0.1, 8, 10)
cond_val = drift(cond_pos) + trend(cond_pos)
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
drift_field = drift(gridx) + trend(gridx)
# kriging
model = Gaussian(dim=1, var=0.1, len_scale=2)
krig_trend = krige.Ordinary(model, cond_pos, cond_val, trend=trend)
krig_trend(gridx)
ax = krig_trend.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.plot(gridx, trend(gridx), ":", label="linear trend")
ax.plot(gridx, drift_field, "--", label="original field")
ax.legend()





Total running time of the script: ( 0 minutes  0.145 seconds)



Download Python source code: 07_detrended_ordinary_kriging.py




Download Jupyter notebook: 07_detrended_ordinary_kriging.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note

Click here
to download the full example code




Incorporating measurement errors

To incorporate the nugget effect and/or given measurement errors,
one can set exact to False and provide either individual measurement errors
for each point or set the nugget as a constant measurement error everywhere.

In the following we will show the influence of the nugget and
measurement errors.

import numpy as np
import gstools as gs

# condtions
cond_pos = [0.3, 1.1, 1.9, 3.3, 4.7]
cond_val = [0.47, 0.74, 0.56, 1.47, 1.74]
cond_err = [0.01, 0.0, 0.1, 0.05, 0]
# resulting grid
gridx = np.linspace(0.0, 15.0, 151)
# spatial random field class
model = gs.Gaussian(dim=1, var=0.9, len_scale=1, nugget=0.1)





Here we will use Simple kriging (unbiased=False) to interpolate the given
conditions.

krig = gs.Krige(
    model=model,
    cond_pos=cond_pos,
    cond_val=cond_val,
    mean=1,
    unbiased=False,
    exact=False,
    cond_err=cond_err,
)
krig(gridx)





Let’s plot the data. You can see, that the estimated values differ more from
the input, when the given measurement errors get bigger.
In addition we plot the standard deviation.

ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.fill_between(
    gridx,
    # plus/minus standard deviation (70 percent confidence interval)
    krig.field - np.sqrt(krig.krige_var),
    krig.field + np.sqrt(krig.krige_var),
    alpha=0.3,
    label="Standard deviation",
)
ax.legend()





[image: Field 1D: (151,)]
Total running time of the script: ( 0 minutes  0.117 seconds)



Download Python source code: 08_measurement_errors.py




Download Jupyter notebook: 08_measurement_errors.ipynb
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Redundant data and pseudo-inverse

It can happen, that the kriging system gets numerically unstable.
One reason could be, that the input data contains redundant conditioning points
that hold different values.

To smoothly deal with such situations, you can use the pseudo
inverse for the kriging matrix, which is enabled by default.

This will result in the average value for the redundant data.


Example

In the following we have two different values at the same location.
The resulting kriging field will hold the average at this point.

import numpy as np
from gstools import Gaussian, krige

# condtions
cond_pos = [0.3, 1.9, 1.1, 3.3, 1.1]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.14]
# resulting grid
gridx = np.linspace(0.0, 8.0, 81)
# spatial random field class
model = Gaussian(dim=1, var=0.5, len_scale=1)





krig = krige.Ordinary(model, cond_pos=cond_pos, cond_val=cond_val)
krig(gridx)





ax = krig.plot()
ax.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
ax.legend()





[image: Field 1D: (81,)]
Total running time of the script: ( 0 minutes  0.116 seconds)



Download Python source code: 09_pseudo_inverse.py




Download Jupyter notebook: 09_pseudo_inverse.ipynb
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Conditioned Fields

Kriged fields tend to approach the field mean outside the area of observations.
To generate random fields, that coincide with given observations, but are still
random according to a given covariance model away from the observations proximity,
we provide the generation of conditioned random fields.

The idea behind conditioned random fields builds up on kriging.
First we generate a field with a kriging method, then we generate a random field,
with 0 as mean and 1 as variance that will be multiplied with the kriging
standard deviation.

To do so, you can instantiate a CondSRF class with a configured
Krige class.

The setup of the a conditioned random field should be as follows:

krige = gs.Krige(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)
field = cond_srf(grid)






Examples


[image: Conditioning with Ordinary Kriging]
Conditioning with Ordinary Kriging








[image: Creating an Ensemble of conditioned 2D Fields]
Creating an Ensemble of conditioned 2D Fields
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Conditioning with Ordinary Kriging

Here we use ordinary kriging in 1D (for plotting reasons)
with 5 given observations/conditions,
to generate an ensemble of conditioned random fields.

import numpy as np
import matplotlib.pyplot as plt
import gstools as gs

# condtions
cond_pos = [0.3, 1.9, 1.1, 3.3, 4.7]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]
gridx = np.linspace(0.0, 15.0, 151)





The conditioned spatial random field class depends on a Krige class in order
to handle the conditions.
This is created as described in the kriging tutorial.

Here we use a Gaussian covariance model and ordinary kriging for conditioning
the spatial random field.

model = gs.Gaussian(dim=1, var=0.5, len_scale=1.5)
krige = gs.krige.Ordinary(model, cond_pos, cond_val)
cond_srf = gs.CondSRF(krige)





fields = []
for i in range(100):
    fields.append(cond_srf(gridx, seed=i))
    label = "Conditioned ensemble" if i == 0 else None
    plt.plot(gridx, fields[i], color="k", alpha=0.1, label=label)
plt.plot(gridx, cond_srf.krige(gridx, only_mean=True), label="estimated mean")
plt.plot(gridx, np.mean(fields, axis=0), linestyle=":", label="Ensemble mean")
plt.plot(gridx, cond_srf.krige.field, linestyle="dashed", label="kriged field")
plt.scatter(cond_pos, cond_val, color="k", zorder=10, label="Conditions")
# 99 percent confidence interval
conf = gs.tools.confidence_scaling(0.99)
plt.fill_between(
    gridx,
    cond_srf.krige.field - conf * np.sqrt(cond_srf.krige.krige_var),
    cond_srf.krige.field + conf * np.sqrt(cond_srf.krige.krige_var),
    alpha=0.3,
    label="99% confidence interval",
)
plt.legend()
plt.show()





[image: 00 condition ensemble]
As you can see, the kriging field coincides with the ensemble mean of the
conditioned random fields and the estimated mean
is the mean of the far-field.

Total running time of the script: ( 0 minutes  1.334 seconds)



Download Python source code: 00_condition_ensemble.py




Download Jupyter notebook: 00_condition_ensemble.ipynb
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Creating an Ensemble of conditioned 2D Fields

Let’s create an ensemble of conditioned random fields in 2D.

import numpy as np
import matplotlib.pyplot as plt
import gstools as gs


# conditioning data (x, y, value)
cond_pos = [[0.3, 1.9, 1.1, 3.3, 4.7], [1.2, 0.6, 3.2, 4.4, 3.8]]
cond_val = [0.47, 0.56, 0.74, 1.47, 1.74]

# grid definition for output field
x = np.arange(0, 5, 0.1)
y = np.arange(0, 5, 0.1)

model = gs.Gaussian(dim=2, var=0.5, len_scale=5, anis=0.5, angles=-0.5)
krige = gs.Krige(model, cond_pos=cond_pos, cond_val=cond_val)
cond_srf = gs.CondSRF(krige)





We create a list containing the generated conditioned fields.

ens_no = 4
field = []
for i in range(ens_no):
    field.append(cond_srf.structured([x, y], seed=i))





Now let’s have a look at the pairwise differences between the generated
fields. We will see, that they coincide at the given conditions.

fig, ax = plt.subplots(ens_no + 1, ens_no + 1, figsize=(8, 8))
# plotting kwargs for scatter and image
sc_kwargs = dict(c=cond_val, edgecolors="k", vmin=0, vmax=np.max(field))
im_kwargs = dict(extent=2 * [0, 5], origin="lower", vmin=0, vmax=np.max(field))
for i in range(ens_no):
    # conditioned fields and conditions
    ax[i + 1, 0].imshow(field[i].T, **im_kwargs)
    ax[i + 1, 0].scatter(*cond_pos, **sc_kwargs)
    ax[i + 1, 0].set_ylabel(f"Field {i+1}", fontsize=10)
    ax[0, i + 1].imshow(field[i].T, **im_kwargs)
    ax[0, i + 1].scatter(*cond_pos, **sc_kwargs)
    ax[0, i + 1].set_title(f"Field {i+1}", fontsize=10)
    # absolute differences
    for j in range(ens_no):
        ax[i + 1, j + 1].imshow(np.abs(field[i] - field[j]).T, **im_kwargs)

# beautify plots
ax[0, 0].axis("off")
for a in ax.flatten():
    a.set_xticklabels([]), a.set_yticklabels([])
    a.set_xticks([]), a.set_yticks([])
fig.subplots_adjust(wspace=0, hspace=0)
fig.show()





[image: Field 1, Field 2, Field 3, Field 4]
Total running time of the script: ( 0 minutes  1.317 seconds)



Download Python source code: 01_2D_condition_ensemble.py




Download Jupyter notebook: 01_2D_condition_ensemble.ipynb
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Field transformations

The generated fields of gstools are ordinary Gaussian random fields.
In application there are several transformations to describe real world
problems in an appropriate manner.

GStools provides a submodule gstools.transform with a range of
common transformations:







	binary(fld[, divide, upper, lower])

	Binary transformation.



	discrete(fld, values[, thresholds])

	Discrete transformation.



	boxcox(fld[, lmbda, shift])

	(Inverse) Box-Cox transformation to denormalize data.



	zinnharvey(fld[, conn])

	Zinn and Harvey transformation to connect low or high values.



	normal_force_moments(fld)

	Force moments of a normal distributed field.



	normal_to_lognormal(fld)

	Transform normal distribution to log-normal distribution.



	normal_to_uniform(fld)

	Transform normal distribution to uniform distribution on [0, 1].



	normal_to_arcsin(fld[, a, b])

	Transform normal distribution to the bimodal arcsin distribution.



	normal_to_uquad(fld[, a, b])

	Transform normal distribution to U-quadratic distribution.






All the transformations take a field class, that holds a generated field,
as input and will manipulate this field inplace.

Simply import the transform submodule and apply a transformation to the srf class:

from gstools import transform as tf
...
tf.normal_to_lognormal(srf)






Examples


[image: log-normal fields]
log-normal fields








[image: binary fields]
binary fields








[image: Discrete fields]
Discrete fields








[image: Zinn & Harvey transformation]
Zinn & Harvey transformation








[image: bimodal fields]
bimodal fields








[image: Combinations]
Combinations
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to download the full example code




log-normal fields

Here we transform a field to a log-normal distribution:

[image: Field 2D structured: (100, 100)]
import gstools as gs

# structured field with a size of 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, seed=20170519)
srf.structured([x, y])
gs.transform.normal_to_lognormal(srf)
srf.plot()





Total running time of the script: ( 0 minutes  0.722 seconds)



Download Python source code: 00_log_normal.py




Download Jupyter notebook: 00_log_normal.ipynb





Gallery generated by Sphinx-Gallery [https://sphinx-gallery.github.io]





            

          

      

      

    

  

    
      
          
            
  
Note
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to download the full example code




binary fields

Here we transform a field to a binary field with only two values.
The dividing value is the mean by default and the upper and lower values
are derived to preserve the variance.

[image: Field 2D structured: (100, 100)]
import gstools as gs

# structured field with a size of 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, seed=20170519)
srf.structured([x, y])
gs.transform.binary(srf)
srf.plot()





Total running time of the script: ( 0 minutes  0.762 seconds)



Download Python source code: 01_binary.py




Download Jupyter notebook: 01_binary.ipynb
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Discrete fields

Here we transform a field to a discrete field with values.
If we do not give thresholds, the pairwise means of the given
values are taken as thresholds.
If thresholds are given, arbitrary values can be applied to the field.


	[image: Field 2D structured: (200, 200)]


	[image: Field 2D structured: (200, 200)]


	[image: Field 2D structured: (200, 200)]




import numpy as np
import gstools as gs

# structured field with a size of 100x100 and a grid-size of 0.5x0.5
x = y = np.arange(200) * 0.5
model = gs.Gaussian(dim=2, var=1, len_scale=5)
srf = gs.SRF(model, seed=20170519)

# create 5 equidistanly spaced values, thresholds are the arithmetic means
srf.structured([x, y])
discrete_values = np.linspace(np.min(srf.field), np.max(srf.field), 5)
gs.transform.discrete(srf, discrete_values)
srf.plot()

# calculate thresholds for equal shares
# but apply different values to the separated classes
discrete_values2 = [0, -1, 2, -3, 4]
srf.structured([x, y])
gs.transform.discrete(srf, discrete_values2, thresholds="equal")
srf.plot()

# user defined thresholds
thresholds = [-1, 1]
# apply different values to the separated classes
discrete_values3 = [0, 1, 10]
srf.structured([x, y])
gs.transform.discrete(srf, discrete_values3, thresholds=thresholds)
srf.plot()





Total running time of the script: ( 0 minutes  7.023 seconds)



Download Python source code: 02_discrete.py




Download Jupyter notebook: 02_discrete.ipynb
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Zinn & Harvey transformation

Here, we transform a field with the so called “Zinn & Harvey” transformation presented in
Zinn & Harvey (2003) [https://www.researchgate.net/publication/282442995_zinnharvey2003].
With this transformation, one could overcome the restriction that in ordinary
Gaussian random fields the mean values are the ones being the most connected.

[image: Field 2D structured: (100, 100)]
import gstools as gs

# structured field with a size of 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, seed=20170519)
srf.structured([x, y])
gs.transform.zinnharvey(srf, conn="high")
srf.plot()





Total running time of the script: ( 0 minutes  0.783 seconds)



Download Python source code: 03_zinn_harvey.py




Download Jupyter notebook: 03_zinn_harvey.ipynb
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bimodal fields

We provide two transformations to obtain bimodal distributions:


	arcsin [https://en.wikipedia.org/wiki/Arcsine_distribution].


	uquad [https://en.wikipedia.org/wiki/U-quadratic_distribution].




Both transformations will preserve the mean and variance of the given field by default.

[image: Field 2D structured: (100, 100)]
import gstools as gs

# structured field with a size of 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, seed=20170519)
field = srf.structured([x, y])
gs.transform.normal_to_arcsin(srf)
srf.plot()





Total running time of the script: ( 0 minutes  0.809 seconds)



Download Python source code: 04_bimodal.py




Download Jupyter notebook: 04_bimodal.ipynb
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Combinations

You can combine different transformations simply by successively applying them.

Here, we first force the single field realization to hold the given moments,
namely mean and variance.
Then we apply the Zinn & Harvey transformation to connect the low values.
Afterwards the field is transformed to a binary field and last but not least,
we transform it to log-values.

import gstools as gs

# structured field with a size of 100x100 and a grid-size of 1x1
x = y = range(100)
model = gs.Gaussian(dim=2, var=1, len_scale=10)
srf = gs.SRF(model, mean=-9, seed=20170519)
srf.structured([x, y])
gs.transform.normal_force_moments(srf)
gs.transform.zinnharvey(srf, conn="low")
gs.transform.binary(srf)
gs.transform.normal_to_lognormal(srf)
srf.plot()





[image: Field 2D structured: (100, 100)]
The resulting field could be interpreted as a transmissivity field, where
the values of low permeability are the ones being the most connected
and only two kinds of soil exist.

Total running time of the script: ( 0 minutes  0.840 seconds)



Download Python source code: 05_combinations.py




Download Jupyter notebook: 05_combinations.ipynb
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Geographic Coordinates

GSTools provides support for
geographic coordinates [https://en.wikipedia.org/wiki/Geographic_coordinate_system]
given by:


	latitude lat: specifies the north–south position of a point on the Earth’s surface


	longitude lon: specifies the east–west position of a point on the Earth’s surface




If you want to use this feature for field generation or Kriging, you
have to set up a geographical covariance Model by setting latlon=True
in your desired model (see CovModel):

import numpy as np
import gstools as gs

model = gs.Gaussian(latlon=True, var=2, len_scale=np.pi / 16)





By doing so, the model will use the associated Yadrenko model on a sphere
(see here [https://onlinelibrary.wiley.com/doi/abs/10.1002/sta4.84]).
The len_scale is given in radians to scale the arc-length.
In order to have a more meaningful length scale, one can use the rescale
argument:

import gstools as gs

model = gs.Gaussian(latlon=True, var=2, len_scale=500, rescale=gs.EARTH_RADIUS)





Then len_scale can be interpreted as given in km.

A Yadrenko model [image: C] is derived from a valid
isotropic covariance model in 3D [image: C_{3D}] by the following relation:


[image: C(\zeta)=C_{3D}\left(2 \cdot \sin\left(\frac{\zeta}{2}\right)\right)]


Where [image: \zeta] is the
great-circle distance [https://en.wikipedia.org/wiki/Great-circle_distance].


Note

lat and lon are given in degree, whereas the great-circle distance
[image: zeta] is given in radians.



Note, that [image: 2 \cdot \sin(\frac{\zeta}{2})] is the
chordal distance [https://en.wikipedia.org/wiki/Chord_(geometry)]
of two points on a sphere, which means we simply think of the earth surface
as a sphere, that is cut out of the surrounding three dimensional space,
when using the Yadrenko model.


Note

Anisotropy is not available with the geographical models, since their
geometry is not euclidean. When passing values for CovModel.anis
or CovModel.angles, they will be ignored.

Since the Yadrenko model comes from a 3D model, the model dimension will
be 3 (see CovModel.dim) but the field_dim will be 2 in this case
(see CovModel.field_dim).




Examples


[image: Working with lat-lon random fields]
Working with lat-lon random fields








[image: Kriging geographical data]
Kriging geographical data
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Working with lat-lon random fields

In this example, we demonstrate how to generate a random field on
geographical coordinates.

First we setup a model, with latlon=True, to get the associated
Yadrenko model.

In addition, we will use the earth radius provided by EARTH_RADIUS,
to have a meaningful length scale in km.

To generate the field, we simply pass (lat, lon) as the position tuple
to the SRF class.

import gstools as gs

model = gs.Gaussian(latlon=True, var=1, len_scale=777, rescale=gs.EARTH_RADIUS)

lat = lon = range(-80, 81)
srf = gs.SRF(model, seed=1234)
field = srf.structured((lat, lon))
srf.plot()





[image: Field 2D structured: (161, 161)]
This was easy as always! Now we can use this field to estimate the empirical
variogram in order to prove, that the generated field has the correct
geo-statistical properties.
The vario_estimate routine also provides a latlon switch to
indicate, that the given field is defined on geographical variables.

As we will see, everthing went well… phew!

bin_edges = [0.01 * i for i in range(30)]
bin_center, emp_vario = gs.vario_estimate(
    (lat, lon),
    field,
    bin_edges,
    latlon=True,
    mesh_type="structured",
    sampling_size=2000,
    sampling_seed=12345,
)

ax = model.plot("vario_yadrenko", x_max=0.3)
model.fit_variogram(bin_center, emp_vario, nugget=False)
model.plot("vario_yadrenko", ax=ax, label="fitted", x_max=0.3)
ax.scatter(bin_center, emp_vario, color="k")
print(model)





[image: 00 field generation]
Out:

Gaussian(latlon=True, var=1.02, len_scale=8.3e+02, nugget=0.0, rescale=6.37e+03)






Note

Note, that the estimated variogram coincides with the yadrenko variogram,
which means it depends on the great-circle distance given in radians.

Keep that in mind when defining bins: The range is at most
[image: \pi\approx 3.14], which corresponds to the half globe.



Total running time of the script: ( 0 minutes  9.909 seconds)



Download Python source code: 00_field_generation.py




Download Jupyter notebook: 00_field_generation.ipynb
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Kriging geographical data

In this example we are going to interpolate actual temperature data from
the German weather service DWD [https://www.dwd.de/EN].

Data is retrieved utilizing the beautiful package
wetterdienst [https://github.com/earthobservations/wetterdienst],
which serves as an API for the DWD data.

For better visualization, we also download a simple shapefile of the German
borderline with cartopy [https://github.com/SciTools/cartopy].

In order to keep the number of dependecies low, the calls of both functions
shown beneath are commented out.

import numpy as np
import matplotlib.pyplot as plt
import gstools as gs


def get_borders_germany():
    """Download simple german shape file with cartopy."""
    from cartopy.io import shapereader as shp_read  # version 0.18.0
    import geopandas as gp  # 0.8.1

    shpfile = shp_read.natural_earth("50m", "cultural", "admin_0_countries")
    df = gp.read_file(shpfile)  # only use the simplest polygon
    poly = df.loc[df["ADMIN"] == "Germany"]["geometry"].values[0][0]
    np.savetxt("de_borders.txt", list(poly.exterior.coords))


def get_dwd_temperature(date="2020-06-09 12:00:00"):
    """Get air temperature from german weather stations from 9.6.20 12:00."""
    from wetterdienst.dwd import observations as obs  # version 0.13.0

    settings = dict(
        resolution=obs.DWDObservationResolution.HOURLY,
        start_date=date,
        end_date=date,
    )
    sites = obs.DWDObservationStations(
        parameter_set=obs.DWDObservationParameterSet.TEMPERATURE_AIR,
        period=obs.DWDObservationPeriod.RECENT,
        **settings,
    )
    ids, lat, lon = sites.all().loc[:, ["STATION_ID", "LAT", "LON"]].values.T
    observations = obs.DWDObservationData(
        station_ids=ids,
        parameters=obs.DWDObservationParameter.HOURLY.TEMPERATURE_AIR_200,
        periods=obs.DWDObservationPeriod.RECENT,
        **settings,
    )
    temp = observations.all().VALUE.values
    sel = np.isfinite(temp)
    # select only valid temperature data
    ids, lat, lon, temp = ids.astype(float)[sel], lat[sel], lon[sel], temp[sel]
    head = "id, lat, lon, temp"  # add a header to the file
    np.savetxt("temp_obs.txt", np.array([ids, lat, lon, temp]).T, header=head)





If you want to download the data again,
uncomment the two following lines. We will simply load the resulting
files to gain the border polygon and the observed temperature along with
the station locations given by lat-lon values.

# get_borders_germany()
# get_dwd_temperature(date="2020-06-09 12:00:00")

border = np.loadtxt("de_borders.txt")
ids, lat, lon, temp = np.loadtxt("temp_obs.txt").T





First we will estimate the variogram of our temperature data.
As the maximal bin distance we choose 8 degrees, which corresponds to a
chordal length of about 900 km.

bins = gs.standard_bins((lat, lon), max_dist=np.deg2rad(8), latlon=True)
bin_c, vario = gs.vario_estimate((lat, lon), temp, bins, latlon=True)





Now we can use this estimated variogram to fit a model to it.
Here we will use a Spherical model. We select the latlon option
to use the Yadrenko variant of the model to gain a valid model for lat-lon
coordinates and we rescale it to the earth-radius. Otherwise the length
scale would be given in radians representing the great-circle distance.

We deselect the nugget from fitting and plot the result afterwards.


Note

You need to plot the Yadrenko variogram, since the standard variogram
still holds the ordinary routine that is not respecting the great-circle
distance.



model = gs.Spherical(latlon=True, rescale=gs.EARTH_RADIUS)
model.fit_variogram(bin_c, vario, nugget=False)
ax = model.plot("vario_yadrenko", x_max=bins[-1])
ax.scatter(bin_c, vario)
print(model)





[image: 01 dwd krige]
Out:

Spherical(latlon=True, var=13.1, len_scale=5.93e+02, nugget=0.0, rescale=6.37e+03)





As we see, we have a rather large correlation length of 600 km.

Now we want to interpolate the data using Universal kriging.
In order to tinker around with the data, we will use a north-south drift
by assuming a linear correlation with the latitude.
This can be done as follows:

def north_south_drift(lat, lon):
    return lat


uk = gs.krige.Universal(
    model=model,
    cond_pos=(lat, lon),
    cond_val=temp,
    drift_functions=north_south_drift,
)





Now we generate the kriging field, by defining a lat-lon grid that covers
the whole of Germany. The Krige class provides the option to only
krige the mean field, so one can have a glimpse at the estimated drift.

g_lat = np.arange(47, 56.1, 0.1)
g_lon = np.arange(5, 16.1, 0.1)

field, k_var = uk((g_lat, g_lon), mesh_type="structured")
mean = uk((g_lat, g_lon), mesh_type="structured", only_mean=True)





And that’s it. Now let’s have a look at the generated field and the input
data along with the estimated mean:

levels = np.linspace(5, 23, 64)
fig, ax = plt.subplots(1, 3, figsize=[10, 5], sharey=True)
sca = ax[0].scatter(lon, lat, c=temp, vmin=5, vmax=23, cmap="coolwarm")
co1 = ax[1].contourf(g_lon, g_lat, field, levels, cmap="coolwarm")
co2 = ax[2].contourf(g_lon, g_lat, mean, levels, cmap="coolwarm")

[ax[i].plot(border[:, 0], border[:, 1], color="k") for i in range(3)]
[ax[i].set_xlim([5, 16]) for i in range(3)]
[ax[i].set_xlabel("Lon in deg") for i in range(3)]
ax[0].set_ylabel("Lat in deg")

ax[0].set_title("Temperature observations at 2m\nfrom DWD (2020-06-09 12:00)")
ax[1].set_title("Interpolated temperature\nwith North-South drift")
ax[2].set_title("Estimated mean drift\nfrom Universal Kriging")

fmt = dict(orientation="horizontal", shrink=0.5, fraction=0.1, pad=0.2)
fig.colorbar(co2, ax=ax, **fmt).set_label("T in [°C]")





[image: Temperature observations at 2m from DWD (2020-06-09 12:00), Interpolated temperature with North-South drift, Estimated mean drift from Universal Kriging]
To get a better impression of the estimated north-south drift, we’ll take
a look at a cross-section at a longitude of 10 degree:

fig, ax = plt.subplots()
ax.plot(g_lat, field[:, 50], label="Interpolated temperature")
ax.plot(g_lat, mean[:, 50], label="North-South mean drift")
ax.set_xlabel("Lat in deg")
ax.set_ylabel("T in [°C]")
ax.set_title("North-South cross-section at 10°")
ax.legend()





[image: North-South cross-section at 10°]
Interpretion of the results is now up to you! ;-)

Total running time of the script: ( 0 minutes  8.144 seconds)



Download Python source code: 01_dwd_krige.py




Download Jupyter notebook: 01_dwd_krige.ipynb
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Spatio-Temporal Modeling

Spatio-Temporal modelling can provide insights into time dependent processes
like rainfall, air temperature or crop yield.

GSTools provides the metric spatio-temporal model for all covariance models
by enhancing the spatial model dimension with a time dimension to result in
the spatio-temporal dimension st_dim and setting a
spatio-temporal anisotropy ratio with st_anis:

import gstools as gs
dim = 3  # spatial dimension
st_dim = dim + 1
st_anis = 0.4
st_model = gs.Exponential(dim=st_dim, anis=st_anis)





Since it is given in the name “spatio-temporal”,
we will always treat the time as last dimension.
This enables us to have spatial anisotropy and rotation defined as in
non-temporal models, without altering the behavior in the time dimension:

anis = [0.4, 0.2]  # spatial anisotropy in 3D
angles = [0.5, 0.4, 0.3]  # spatial rotation in 3D
st_model = gs.Exponential(dim=st_dim, anis=anis+[st_anis], angles=angles)





In order to generate spatio-temporal position tuples, GSTools provides a
convenient function generate_st_grid. The output can be used for
spatio-temporal random field generation (or kriging resp. conditioned fields):

pos = dim * [1, 2, 3]  # 3 points in space (1,1,1), (2,2,2) and (3,3,3)
time = range(10)  # 10 time steps
st_grid = gs.generate_st_grid(pos, time)
st_rf = gs.SRF(st_model)
st_field = st_rf(st_grid).reshape(-1, len(time))





Then we can access the different time-steps by the last array index.


Examples


[image: Creating a 1D Synthetic Precipitation Field]
Creating a 1D Synthetic Precipitation Field








[image: Creating a 2D Synthetic Precipitation Field]
Creating a 2D Synthetic Precipitation Field
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Creating a 1D Synthetic Precipitation Field

In this example we will create a time series of a 1D synthetic precipitation
field.

We’ll start off by creating a Gaussian random field with an exponential
variogram, which seems to reproduce the spatial correlations of precipitation
fields quite well. We’ll create a daily timeseries over a one dimensional cross
section of 50km. This workflow is suited for sub daily precipitation time
series.

import copy
import numpy as np
import matplotlib.pyplot as plt
import gstools as gs

# fix the seed for reproducibility
seed = 20170521
# spatial axis of 50km with a resolution of 1km
x = np.arange(0, 50, 1.0)
# half daily timesteps over three months
t = np.arange(0.0, 90.0, 0.5)

# total spatio-temporal dimension
st_dim = 1 + 1
# space-time anisotropy ratio given in units d / km
st_anis = 0.4

# an exponential variogram with a corr. lengths of 2d and 5km
model = gs.Exponential(dim=st_dim, var=1.0, len_scale=5.0, anis=st_anis)
# create a spatial random field instance
srf = gs.SRF(model, seed=seed)

pos, time = [x], [t]

# a Gaussian random field which is also saved internally for the transformations
srf.structured(pos + time)
P_gau = copy.deepcopy(srf.field)





Next, we could take care of the dry periods. Therefore we would simply
introduce a lower threshold value. But we will combine this step with the
next one. Anyway, for demonstration purposes, we will also do it with the
threshold value now.

threshold = 0.85
P_cut = copy.deepcopy(srf.field)
P_cut[P_cut <= threshold] = 0.0





With the above lines of code we have created a cut off Gaussian spatial
random field with an exponential variogram. But precipitation fields are not
distributed Gaussian. Thus, we will now transform the field with an inverse
box-cox transformation (create a non-Gaussian field) , which is often used to
account for the skewness of precipitation fields. Different values have been
sugge