gstools.field.generator.Generator

class gstools.field.generator.Generator(model, **kwargs)[source]

Bases: ABC

Abstract generator class.

Parameters
  • model (CovModel) – Covariance model

  • **kwargs – Placeholder for keyword-args

Attributes
name

str: Name of the generator.

value_type

str: Type of the field values (scalar, vector).

Methods

__call__(pos[, add_nugget])

Generate the field.

get_nugget(shape)

Generate normal distributed values for the nugget simulation.

update([model, seed])

Update the model and the seed.

abstract __call__(pos, add_nugget=True)[source]

Generate the field.

Parameters
  • pos ((d, n), numpy.ndarray) – the position tuple with d dimensions and n points.

  • add_nugget (bool) – Whether to add nugget noise to the field.

Returns

the random modes

Return type

numpy.ndarray

abstract get_nugget(shape)[source]

Generate normal distributed values for the nugget simulation.

Parameters

shape (tuple) – the shape of the summed modes

Returns

nugget – the nugget in the same shape as the summed modes

Return type

numpy.ndarray

abstract update(model=None, seed=nan)[source]

Update the model and the seed.

If model and seed are not different, nothing will be done.

Parameters
  • model (CovModel or None, optional) – covariance model. Default: None

  • seed (int or None or numpy.nan, optional) – the seed of the random number generator. If None, a random seed is used. If numpy.nan, the actual seed will be kept. Default: numpy.nan

property name

Name of the generator.

Type

str

abstract property value_type

Type of the field values (scalar, vector).

Type

str