pykrige.rk.Krige

class pykrige.rk.Krige(method='ordinary', variogram_model='linear', nlags=6, weight=False, n_closest_points=10, verbose=False, exact_values=True, pseudo_inv=False, pseudo_inv_type='pinv', variogram_parameters=None, variogram_function=None, anisotropy_scaling=(1.0, 1.0), anisotropy_angle=(0.0, 0.0, 0.0), enable_statistics=False, coordinates_type='euclidean', drift_terms=None, point_drift=None, ext_drift_grid=(None, None, None), functional_drift=None)[source]

Bases: RegressorMixin, BaseEstimator

A scikit-learn wrapper class for Ordinary and Universal Kriging.

This works with both Grid/RandomSearchCv for finding the best Krige parameters combination for a problem.

Parameters:
  • method (str, optional) – type of kriging to be performed

  • variogram_model (str, optional) – variogram model to be used during Kriging

  • nlags (int) – see OK/UK class description

  • weight (bool) – see OK/UK class description

  • n_closest_points (int) – number of closest points to be used during Ordinary Kriging

  • verbose (bool) – see OK/UK class description

  • exact_values (bool) – see OK/UK class description

  • variogram_parameters (list or dict) – see OK/UK class description

  • variogram_function (callable) – see OK/UK class description

  • anisotropy_scaling (tuple) – single value for 2D (UK/OK) and two values in 3D (UK3D/OK3D)

  • anisotropy_angle (tuple) – single value for 2D (UK/OK) and three values in 3D (UK3D/OK3D)

  • enable_statistics (bool) – see OK class description

  • coordinates_type (str) – see OK/UK class description

  • drift_terms (list of strings) – see UK/UK3D class description

  • point_drift (array_like) – see UK class description

  • ext_drift_grid (tuple) – Holding the three values external_drift, external_drift_x and external_drift_z for the UK class

  • functional_drift (list of callable) – see UK/UK3D class description

Methods

execute(points, *args, **kwargs)

Execute.

fit(x, y, *args, **kwargs)

Fit the current model.

get_metadata_routing()

Get metadata routing of this object.

get_params([deep])

Get parameters for this estimator.

predict(x, *args, **kwargs)

Predict.

score(X, y[, sample_weight])

Return the coefficient of determination of the prediction.

set_fit_request(*[, x])

Request metadata passed to the fit method.

set_params(**params)

Set the parameters of this estimator.

set_predict_request(*[, x])

Request metadata passed to the predict method.

set_score_request(*[, sample_weight])

Request metadata passed to the score method.

execute(points, *args, **kwargs)[source]

Execute.

Parameters:

points (dict)

Returns:

  • Prediction array

  • Variance array

fit(x, y, *args, **kwargs)[source]

Fit the current model.

Parameters:
  • x (ndarray) – array of Points, (x, y) pairs of shape (N, 2) for 2d kriging array of Points, (x, y, z) pairs of shape (N, 3) for 3d kriging

  • y (ndarray) – array of targets (N, )

get_metadata_routing()[source]

Get metadata routing of this object.

Please check User Guide on how the routing mechanism works.

Returns:

routing – A MetadataRequest encapsulating routing information.

Return type:

MetadataRequest

get_params(deep=True)[source]

Get parameters for this estimator.

Parameters:

deep (bool, default=True) – If True, will return the parameters for this estimator and contained subobjects that are estimators.

Returns:

params – Parameter names mapped to their values.

Return type:

dict

predict(x, *args, **kwargs)[source]

Predict.

Parameters:

x (ndarray) – array of Points, (x, y) pairs of shape (N, 2) for 2d kriging array of Points, (x, y, z) pairs of shape (N, 3) for 3d kriging

Return type:

Prediction array

score(X, y, sample_weight=None)[source]

Return the coefficient of determination of the prediction.

The coefficient of determination \(R^2\) is defined as \((1 - \frac{u}{v})\), where \(u\) is the residual sum of squares ((y_true - y_pred)** 2).sum() and \(v\) is the total sum of squares ((y_true - y_true.mean()) ** 2).sum(). The best possible score is 1.0 and it can be negative (because the model can be arbitrarily worse). A constant model that always predicts the expected value of y, disregarding the input features, would get a \(R^2\) score of 0.0.

Parameters:
  • X (array-like of shape (n_samples, n_features)) – Test samples. For some estimators this may be a precomputed kernel matrix or a list of generic objects instead with shape (n_samples, n_samples_fitted), where n_samples_fitted is the number of samples used in the fitting for the estimator.

  • y (array-like of shape (n_samples,) or (n_samples, n_outputs)) – True values for X.

  • sample_weight (array-like of shape (n_samples,), default=None) – Sample weights.

Returns:

score\(R^2\) of self.predict(X) w.r.t. y.

Return type:

float

Notes

The \(R^2\) score used when calling score on a regressor uses multioutput='uniform_average' from version 0.23 to keep consistent with default value of r2_score(). This influences the score method of all the multioutput regressors (except for MultiOutputRegressor).

set_fit_request(*, x: bool | None | str = '$UNCHANGED$') Krige[source]

Request metadata passed to the fit method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to fit if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to fit.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters:

x (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for x parameter in fit.

Returns:

self – The updated object.

Return type:

object

set_params(**params)[source]

Set the parameters of this estimator.

The method works on simple estimators as well as on nested objects (such as Pipeline). The latter have parameters of the form <component>__<parameter> so that it’s possible to update each component of a nested object.

Parameters:

**params (dict) – Estimator parameters.

Returns:

self – Estimator instance.

Return type:

estimator instance

set_predict_request(*, x: bool | None | str = '$UNCHANGED$') Krige[source]

Request metadata passed to the predict method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to predict if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to predict.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters:

x (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for x parameter in predict.

Returns:

self – The updated object.

Return type:

object

set_score_request(*, sample_weight: bool | None | str = '$UNCHANGED$') Krige[source]

Request metadata passed to the score method.

Note that this method is only relevant if enable_metadata_routing=True (see sklearn.set_config()). Please see User Guide on how the routing mechanism works.

The options for each parameter are:

  • True: metadata is requested, and passed to score if provided. The request is ignored if metadata is not provided.

  • False: metadata is not requested and the meta-estimator will not pass it to score.

  • None: metadata is not requested, and the meta-estimator will raise an error if the user provides it.

  • str: metadata should be passed to the meta-estimator with this given alias instead of the original name.

The default (sklearn.utils.metadata_routing.UNCHANGED) retains the existing request. This allows you to change the request for some parameters and not others.

Added in version 1.3.

Note

This method is only relevant if this estimator is used as a sub-estimator of a meta-estimator, e.g. used inside a Pipeline. Otherwise it has no effect.

Parameters:

sample_weight (str, True, False, or None, default=sklearn.utils.metadata_routing.UNCHANGED) – Metadata routing for sample_weight parameter in score.

Returns:

self – The updated object.

Return type:

object