GSTools Interface

Example how to use the PyKrige routines with a GSTools CovModel.

03 gstools covmodel
import gstools as gs
import numpy as np
from matplotlib import pyplot as plt

from pykrige.ok import OrdinaryKriging

# conditioning data
data = np.array(
    [
        [0.3, 1.2, 0.47],
        [1.9, 0.6, 0.56],
        [1.1, 3.2, 0.74],
        [3.3, 4.4, 1.47],
        [4.7, 3.8, 1.74],
    ]
)
# grid definition for output field
gridx = np.arange(0.0, 5.5, 0.1)
gridy = np.arange(0.0, 6.5, 0.1)
# a GSTools based covariance model
cov_model = gs.Gaussian(dim=2, len_scale=4, anis=0.2, angles=-0.5, var=0.5, nugget=0.1)
# ordinary kriging with pykrige
OK1 = OrdinaryKriging(data[:, 0], data[:, 1], data[:, 2], cov_model)
z1, ss1 = OK1.execute("grid", gridx, gridy)
plt.imshow(z1, origin="lower")
plt.show()

Total running time of the script: ( 0 minutes 0.218 seconds)

Gallery generated by Sphinx-Gallery